单组件模型上的球形变形

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xuemei FENG, Qing FANG, Kouichi KONNO, Zhiyi ZHANG, Katsutsugu MATSUYAMA
{"title":"单组件模型上的球形变形","authors":"Xuemei FENG, Qing FANG, Kouichi KONNO, Zhiyi ZHANG, Katsutsugu MATSUYAMA","doi":"10.1587/transinf.2023edp7112","DOIUrl":null,"url":null,"abstract":"In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as ℓ2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.","PeriodicalId":55002,"journal":{"name":"IEICE Transactions on Information and Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical Style Deformation on Single Component Models\",\"authors\":\"Xuemei FENG, Qing FANG, Kouichi KONNO, Zhiyi ZHANG, Katsutsugu MATSUYAMA\",\"doi\":\"10.1587/transinf.2023edp7112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as ℓ2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.\",\"PeriodicalId\":55002,\"journal\":{\"name\":\"IEICE Transactions on Information and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Information and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transinf.2023edp7112\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transinf.2023edp7112","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种适用于单组件模型的球形变形算法,该算法可以在保留原始模型局部细节的同时,使模型具有球形变形。由于3D模型具有由许多组件组成的复杂骨架结构,因此每个组件之间连接周围的变形非常复杂,特别是防止网格自相交。据我们所知,在由多个组件组成的3D模型中,不仅不存在实现球形风格的方法,而且还存在适合单个组件的方法。在本研究中,我们主要研究单组分模型的球形变形。因此,我们提出了一种将输入模型转换为球面样式的变形方法,同时保留了输入模型的局部细节。具体来说,我们定义了一个结合了尽可能刚性(ARAP)方法和球面特征的能量函数。球面项定义为在线性特征上的l2正则化;因此,可以有效地求解相应的优化问题。我们还观察到,变形的结果取决于输入网格的质量。例如,当输入网格由许多钝角三角形组成时,球形变形方法失效。为了解决这一问题,我们提出了一种基于凸包代理模型的可选变形方法作为补充变形方法。我们的代理方法构建了输入模型的代理模型,并将我们的变形方法应用于代理模型,通过投影和插值对输入模型进行变形。我们将所提出的方法应用于简单和复杂的形状,并将实验结果与法线驱动的球形类比的三维几何样式化方法进行了比较,证实了我们的方法成功地变形了光滑、圆形和弯曲的模型。根据实验结果,讨论了算法的局限性和存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical Style Deformation on Single Component Models
In this study, we present a spherical style deformation algorithm to be applied on single component models that can deform the models with spherical style, while preserving the local details of the original models. Because 3D models have complex skeleton structures that consist of many components, the deformation around connections between each single component is complicated, especially preventing mesh self-intersections. To the best of our knowledge, there does not exist not only methods to achieve a spherical style in a 3D model consisting of multiple components but also methods suited to a single component. In this study, we focus on spherical style deformation of single component models. Accordingly, we propose a deformation method that transforms the input model with the spherical style, while preserving the local details of the input model. Specifically, we define an energy function that combines the as-rigid-as-possible (ARAP) method and spherical features. The spherical term is defined as ℓ2-regularization on a linear feature; accordingly, the corresponding optimization can be solved efficiently. We also observed that the results of our deformation are dependent on the quality of the input mesh. For instance, when the input mesh consists of many obtuse triangles, the spherical style deformation method fails. To address this problem, we propose an optional deformation method based on convex hull proxy model as the complementary deformation method. Our proxy method constructs a proxy model of the input model and applies our deformation method to the proxy model to deform the input model by projection and interpolation. We have applied our proposed method to simple and complex shapes, compared our experimental results with the 3D geometric stylization method of normal-driven spherical shape analogies, and confirmed that our method successfully deforms models that are smooth, round, and curved. We also discuss the limitations and problems of our algorithm based on the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Transactions on Information and Systems
IEICE Transactions on Information and Systems 工程技术-计算机:软件工程
CiteScore
1.80
自引率
0.00%
发文量
238
审稿时长
5.0 months
期刊介绍: Published by The Institute of Electronics, Information and Communication Engineers Subject Area: Mathematics Physics Biology, Life Sciences and Basic Medicine General Medicine, Social Medicine, and Nursing Sciences Clinical Medicine Engineering in General Nanosciences and Materials Sciences Mechanical Engineering Electrical and Electronic Engineering Information Sciences Economics, Business & Management Psychology, Education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信