冠状病毒(COVID-19)疾病空间流行病学案例研究与地理空间技术

Muditha K. Heenkenda
{"title":"冠状病毒(COVID-19)疾病空间流行病学案例研究与地理空间技术","authors":"Muditha K. Heenkenda","doi":"10.4236/jgis.2023.155027","DOIUrl":null,"url":null,"abstract":"Spatiotemporal pattern analysis provides a new dimension for data interpretation due to new trends in computer vision and big data analysis. The main aim of this study was to explore the recent advances in geospatial technologies to examine the spatiotemporal pattern of COVID-19 at the Public Health Unit (PHU) level in Ontario, Canada. The spatial autocorrelation results showed that the incidence rate (no. of confirmed cases per 100,000 population–IR/100K) was clustered at the PHU level and found a tendency of clustering high values. Some PHUs in Southern Ontario were identified as hot spots, while Northern PHUs were cold spots. The space-time cube showed an overall trend with a 99% confidence level. Considerable spatial variability in incidence intensity at different times suggested that risk factors were unevenly distributed in space and time. The study also created a regression model that explains the correlation between IR/100K values and potential socioeconomic factors.","PeriodicalId":93313,"journal":{"name":"Journal of geographic information system","volume":"63 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spatial Epidemiology Case Study of Coronavirus (COVID-19) Disease and Geospatial Technologies\",\"authors\":\"Muditha K. Heenkenda\",\"doi\":\"10.4236/jgis.2023.155027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatiotemporal pattern analysis provides a new dimension for data interpretation due to new trends in computer vision and big data analysis. The main aim of this study was to explore the recent advances in geospatial technologies to examine the spatiotemporal pattern of COVID-19 at the Public Health Unit (PHU) level in Ontario, Canada. The spatial autocorrelation results showed that the incidence rate (no. of confirmed cases per 100,000 population–IR/100K) was clustered at the PHU level and found a tendency of clustering high values. Some PHUs in Southern Ontario were identified as hot spots, while Northern PHUs were cold spots. The space-time cube showed an overall trend with a 99% confidence level. Considerable spatial variability in incidence intensity at different times suggested that risk factors were unevenly distributed in space and time. The study also created a regression model that explains the correlation between IR/100K values and potential socioeconomic factors.\",\"PeriodicalId\":93313,\"journal\":{\"name\":\"Journal of geographic information system\",\"volume\":\"63 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of geographic information system\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jgis.2023.155027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geographic information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jgis.2023.155027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于计算机视觉和大数据分析的新趋势,时空模式分析为数据解释提供了一个新的维度。本研究的主要目的是探索地理空间技术的最新进展,以检查加拿大安大略省公共卫生单位(PHU)层面的COVID-19时空格局。空间自相关分析结果表明:每10万人口确诊病例(ir /100K)聚集在PHU水平,并发现聚集高值的趋势。安大略省南部的一些phu被确定为热点,而北部的phu则被确定为冷点。时空立方体以99%的置信度显示了整体趋势。不同时间的发病强度存在较大的空间变异性,表明危险因素在时空上的分布不均匀。该研究还建立了一个回归模型,解释了IR/100K值与潜在社会经济因素之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spatial Epidemiology Case Study of Coronavirus (COVID-19) Disease and Geospatial Technologies
Spatiotemporal pattern analysis provides a new dimension for data interpretation due to new trends in computer vision and big data analysis. The main aim of this study was to explore the recent advances in geospatial technologies to examine the spatiotemporal pattern of COVID-19 at the Public Health Unit (PHU) level in Ontario, Canada. The spatial autocorrelation results showed that the incidence rate (no. of confirmed cases per 100,000 population–IR/100K) was clustered at the PHU level and found a tendency of clustering high values. Some PHUs in Southern Ontario were identified as hot spots, while Northern PHUs were cold spots. The space-time cube showed an overall trend with a 99% confidence level. Considerable spatial variability in incidence intensity at different times suggested that risk factors were unevenly distributed in space and time. The study also created a regression model that explains the correlation between IR/100K values and potential socioeconomic factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信