基于注意力的ResNet50和InceptionV3模型融合水表数字识别

Lama Alkhaled, Ayush Roy, Shivakumara Palaiahnakote
{"title":"基于注意力的ResNet50和InceptionV3模型融合水表数字识别","authors":"Lama Alkhaled, Ayush Roy, Shivakumara Palaiahnakote","doi":"10.47852/bonviewaia32021197","DOIUrl":null,"url":null,"abstract":"Digital water meter digit recognition from images of water meter readings is a challenging research problem. One key reason is that this might be a lack of publicly available datasets to develop such methods. Another reason is the digits suffer from poor quality. In this work, we develop a dataset, called MR-AMR-v1, which comprises 10 different digits (0 to 9) that are commonly found in electrical and electronic water meter readings. Additionally, we generate a synthetic benchmarking dataset to make the proposed model robust. We propose a weighted probability averaging ensemble-based water meter digit recognition method applied to snapshots of the Fourier transformed convolution block attention module (FCBAM) aided combined ResNet50-InceptionV3 architecture. This benchmarking method achieves an accuracy of 88% on test set images (benchmarking data). Our model also achieves a high accuracy of 97.73% on the MNIST dataset. We benchmark the result on this dataset using the proposed method after performing an exhaustive set of experiments.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Attention based Fusion of ResNet50 and InceptionV3 Model for Water Meter Digit Recognition\",\"authors\":\"Lama Alkhaled, Ayush Roy, Shivakumara Palaiahnakote\",\"doi\":\"10.47852/bonviewaia32021197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital water meter digit recognition from images of water meter readings is a challenging research problem. One key reason is that this might be a lack of publicly available datasets to develop such methods. Another reason is the digits suffer from poor quality. In this work, we develop a dataset, called MR-AMR-v1, which comprises 10 different digits (0 to 9) that are commonly found in electrical and electronic water meter readings. Additionally, we generate a synthetic benchmarking dataset to make the proposed model robust. We propose a weighted probability averaging ensemble-based water meter digit recognition method applied to snapshots of the Fourier transformed convolution block attention module (FCBAM) aided combined ResNet50-InceptionV3 architecture. This benchmarking method achieves an accuracy of 88% on test set images (benchmarking data). Our model also achieves a high accuracy of 97.73% on the MNIST dataset. We benchmark the result on this dataset using the proposed method after performing an exhaustive set of experiments.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47852/bonviewaia32021197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47852/bonviewaia32021197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字水表对水表读数图像的数字识别是一个具有挑战性的研究问题。一个关键的原因是,这可能是缺乏公开可用的数据集来开发这样的方法。另一个原因是数字质量差。在这项工作中,我们开发了一个名为MR-AMR-v1的数据集,其中包括10个不同的数字(0到9),这些数字通常出现在电气和电子水表读数中。此外,我们生成了一个综合基准数据集,以使所提出的模型具有鲁棒性。我们提出了一种基于加权概率平均集成的水表数字识别方法,该方法应用于傅立叶变换卷积块注意模块(FCBAM)的快照,并结合ResNet50-InceptionV3架构。这种基准测试方法在测试集图像(基准测试数据)上实现了88%的准确率。我们的模型在MNIST数据集上也达到了97.73%的准确率。在执行了一组详尽的实验之后,我们使用所提出的方法对该数据集的结果进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Attention based Fusion of ResNet50 and InceptionV3 Model for Water Meter Digit Recognition
Digital water meter digit recognition from images of water meter readings is a challenging research problem. One key reason is that this might be a lack of publicly available datasets to develop such methods. Another reason is the digits suffer from poor quality. In this work, we develop a dataset, called MR-AMR-v1, which comprises 10 different digits (0 to 9) that are commonly found in electrical and electronic water meter readings. Additionally, we generate a synthetic benchmarking dataset to make the proposed model robust. We propose a weighted probability averaging ensemble-based water meter digit recognition method applied to snapshots of the Fourier transformed convolution block attention module (FCBAM) aided combined ResNet50-InceptionV3 architecture. This benchmarking method achieves an accuracy of 88% on test set images (benchmarking data). Our model also achieves a high accuracy of 97.73% on the MNIST dataset. We benchmark the result on this dataset using the proposed method after performing an exhaustive set of experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信