{"title":"基于神经预测模型的英语语音音节识别与评价算法","authors":"","doi":"10.25236/ajcis.2023.061008","DOIUrl":null,"url":null,"abstract":"As the most widely used language in the world, English has always had the largest number of learners. Therefore, this study has a practical foundation for the recognition of English stressed syllables. As is well known, listening and speaking are crucial aspects of language learning, as they are directly related to communication. Therefore, this article aimed to design a mature syllable recognition algorithm and assist it based on neural prediction models. In the end, this article used the algorithm system for a month of auxiliary training for a certain English major class, and conducted a comparative test on phrase recognition rate and pronunciation accuracy before and after. The results showed that the phrase recognition rate increased from 89.34% to 96.05%, and the pronunciation accuracy rate increased from 73.65% to 92.84%, comprehensively improving students' English learning ability.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition and Evaluation Algorithm for English Pronunciation Syllables Based on Neural Prediction Model\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.061008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the most widely used language in the world, English has always had the largest number of learners. Therefore, this study has a practical foundation for the recognition of English stressed syllables. As is well known, listening and speaking are crucial aspects of language learning, as they are directly related to communication. Therefore, this article aimed to design a mature syllable recognition algorithm and assist it based on neural prediction models. In the end, this article used the algorithm system for a month of auxiliary training for a certain English major class, and conducted a comparative test on phrase recognition rate and pronunciation accuracy before and after. The results showed that the phrase recognition rate increased from 89.34% to 96.05%, and the pronunciation accuracy rate increased from 73.65% to 92.84%, comprehensively improving students' English learning ability.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.061008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.061008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognition and Evaluation Algorithm for English Pronunciation Syllables Based on Neural Prediction Model
As the most widely used language in the world, English has always had the largest number of learners. Therefore, this study has a practical foundation for the recognition of English stressed syllables. As is well known, listening and speaking are crucial aspects of language learning, as they are directly related to communication. Therefore, this article aimed to design a mature syllable recognition algorithm and assist it based on neural prediction models. In the end, this article used the algorithm system for a month of auxiliary training for a certain English major class, and conducted a comparative test on phrase recognition rate and pronunciation accuracy before and after. The results showed that the phrase recognition rate increased from 89.34% to 96.05%, and the pronunciation accuracy rate increased from 73.65% to 92.84%, comprehensively improving students' English learning ability.