{"title":"光催化应用的cu基多元硫化物纳米材料","authors":"Liang Wu","doi":"10.3934/matersci.2023049","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Due to their environmentally benign elemental components, suitable bandgap and high absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide nanomaterials, including Cu-based ternary sulfides (CuInS<sub>2</sub>, CuIn<sub>5</sub>S<sub>8</sub>, Cu<sub>3</sub>SnS<sub>4</sub>, CuFeS<sub>2</sub>, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu<sub>2</sub>ZnSnS<sub>4</sub>, CuZnGaS, CuInGaS, etc.). We start with a review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, including photocatalytic H<sub>2</sub> production, CO<sub>2</sub> reduction, organic synthesis and degradation of pollutants and photoelectrochemical H<sub>2</sub> production. Finally, we end this review with a summary of the current challenges and opportunities of Cu-based multinary sulfides in future studies.</p> </abstract>","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"59 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-based mutlinary sulfide nanomaterials for photocatalytic applications\",\"authors\":\"Liang Wu\",\"doi\":\"10.3934/matersci.2023049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>Due to their environmentally benign elemental components, suitable bandgap and high absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide nanomaterials, including Cu-based ternary sulfides (CuInS<sub>2</sub>, CuIn<sub>5</sub>S<sub>8</sub>, Cu<sub>3</sub>SnS<sub>4</sub>, CuFeS<sub>2</sub>, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu<sub>2</sub>ZnSnS<sub>4</sub>, CuZnGaS, CuInGaS, etc.). We start with a review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, including photocatalytic H<sub>2</sub> production, CO<sub>2</sub> reduction, organic synthesis and degradation of pollutants and photoelectrochemical H<sub>2</sub> production. Finally, we end this review with a summary of the current challenges and opportunities of Cu-based multinary sulfides in future studies.</p> </abstract>\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cu-based mutlinary sulfide nanomaterials for photocatalytic applications
Due to their environmentally benign elemental components, suitable bandgap and high absorption coefficient in the visible-light range, Cu-based multinary sulfides exhibit excellent photocatalytic properties. Moreover, the adjustable atomic structure and unique electronic state of Cu-based multinary sulfide semiconductors can boost their ability to absorb visible light. In this review, we provide a summary of recent progress in photocatalytic applications of Cu-based multinary sulfide nanomaterials, including Cu-based ternary sulfides (CuInS2, CuIn5S8, Cu3SnS4, CuFeS2, etc.) and Cu-based quaternary sulfides (CuZnInS, Cu2ZnSnS4, CuZnGaS, CuInGaS, etc.). We start with a review of the bandgap alignments of Cu-based ternary sulfides and Cu-based quaternary sulfides, which are the key factors for the photocatalytic activity of semiconductor photocatalysts. Then, we discuss the advancements in photocatalytic applications of Cu-based multinary sulfide photocatalysts, including photocatalytic H2 production, CO2 reduction, organic synthesis and degradation of pollutants and photoelectrochemical H2 production. Finally, we end this review with a summary of the current challenges and opportunities of Cu-based multinary sulfides in future studies.
期刊介绍:
AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.