{"title":"防静电设备着装规范轻量化实时检测方法","authors":"","doi":"10.25236/ajcis.2023.061002","DOIUrl":null,"url":null,"abstract":"Detection of dress code for anti-static equipment is an important management link in clean workshops. To address the issue of difficulty in deploying multi-scale dress code detection methods for anti-static equipment in embedded systems, a lightweight real-time detection method for dress code of anti-static equipment is proposed. This article uses the MobileNetV3-small backbone network to extract features of anti-static equipment, making the model lightweight and easy to deploy. Adopting BiFPN structure to enhance the feature fusion ability of anti-static equipment at multiple scales, and using CIoU Loss and DIoU-NMS to accurately locate anti-static equipment targets, and improving the problem of missed detection of anti-static equipment when people are crowded, and improving the accuracy of dress code detection for anti-static equipment. The experimental results show that the algorithm improves accuracy by 2.1%, reduces parameter count by 43.8%, and reduces model size by 40.6% compared to YOLOv5s. The recognition speed on the Jeston Xavier NX system is 27FPS, and the recognition accuracy of wearing anti-static hats, anti-static clothing, and anti-static shoes is 98.1%, 96.2%, 95.8%, 94.2%, and 94.1%, respectively. It meets the requirements of real-time detection of anti-static equipment dress code.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Real-time Detection Method for Dress Code of Anti-static Equipment\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.061002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of dress code for anti-static equipment is an important management link in clean workshops. To address the issue of difficulty in deploying multi-scale dress code detection methods for anti-static equipment in embedded systems, a lightweight real-time detection method for dress code of anti-static equipment is proposed. This article uses the MobileNetV3-small backbone network to extract features of anti-static equipment, making the model lightweight and easy to deploy. Adopting BiFPN structure to enhance the feature fusion ability of anti-static equipment at multiple scales, and using CIoU Loss and DIoU-NMS to accurately locate anti-static equipment targets, and improving the problem of missed detection of anti-static equipment when people are crowded, and improving the accuracy of dress code detection for anti-static equipment. The experimental results show that the algorithm improves accuracy by 2.1%, reduces parameter count by 43.8%, and reduces model size by 40.6% compared to YOLOv5s. The recognition speed on the Jeston Xavier NX system is 27FPS, and the recognition accuracy of wearing anti-static hats, anti-static clothing, and anti-static shoes is 98.1%, 96.2%, 95.8%, 94.2%, and 94.1%, respectively. It meets the requirements of real-time detection of anti-static equipment dress code.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.061002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.061002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lightweight Real-time Detection Method for Dress Code of Anti-static Equipment
Detection of dress code for anti-static equipment is an important management link in clean workshops. To address the issue of difficulty in deploying multi-scale dress code detection methods for anti-static equipment in embedded systems, a lightweight real-time detection method for dress code of anti-static equipment is proposed. This article uses the MobileNetV3-small backbone network to extract features of anti-static equipment, making the model lightweight and easy to deploy. Adopting BiFPN structure to enhance the feature fusion ability of anti-static equipment at multiple scales, and using CIoU Loss and DIoU-NMS to accurately locate anti-static equipment targets, and improving the problem of missed detection of anti-static equipment when people are crowded, and improving the accuracy of dress code detection for anti-static equipment. The experimental results show that the algorithm improves accuracy by 2.1%, reduces parameter count by 43.8%, and reduces model size by 40.6% compared to YOLOv5s. The recognition speed on the Jeston Xavier NX system is 27FPS, and the recognition accuracy of wearing anti-static hats, anti-static clothing, and anti-static shoes is 98.1%, 96.2%, 95.8%, 94.2%, and 94.1%, respectively. It meets the requirements of real-time detection of anti-static equipment dress code.