基于矢量量化的有损压缩方法

{"title":"基于矢量量化的有损压缩方法","authors":"","doi":"10.25236/ajcis.2023.061001","DOIUrl":null,"url":null,"abstract":"Vector Quantization (VQ) is an effective lossy compression technology developed in the late 1970s. Its theoretical basis is Shannon's rate distortion theory. The basic principle of vector quantization is to use the index of the codeword in the codebook that best matches the input vector for transmission and storage, while decoding only requires a simple table lookup operation. Its outstanding advantages are high compression ratio, simple decoding, and the ability to preserve signal details well. In this article, several VQ approaches are introduced for lossy compression.","PeriodicalId":387664,"journal":{"name":"Academic Journal of Computing & Information Science","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossy Compression Approaches Based on Vector Quantization\",\"authors\":\"\",\"doi\":\"10.25236/ajcis.2023.061001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector Quantization (VQ) is an effective lossy compression technology developed in the late 1970s. Its theoretical basis is Shannon's rate distortion theory. The basic principle of vector quantization is to use the index of the codeword in the codebook that best matches the input vector for transmission and storage, while decoding only requires a simple table lookup operation. Its outstanding advantages are high compression ratio, simple decoding, and the ability to preserve signal details well. In this article, several VQ approaches are introduced for lossy compression.\",\"PeriodicalId\":387664,\"journal\":{\"name\":\"Academic Journal of Computing & Information Science\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Computing & Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25236/ajcis.2023.061001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Computing & Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25236/ajcis.2023.061001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矢量量化(VQ)是20世纪70年代末发展起来的一种有效的有损压缩技术。其理论基础是香农的利率扭曲理论。矢量量化的基本原理是使用码本中与输入矢量最匹配的码字索引进行传输和存储,而解码只需要简单的查表操作。其突出的优点是压缩比高,解码简单,能很好地保留信号细节。在本文中,介绍了几种用于有损压缩的VQ方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossy Compression Approaches Based on Vector Quantization
Vector Quantization (VQ) is an effective lossy compression technology developed in the late 1970s. Its theoretical basis is Shannon's rate distortion theory. The basic principle of vector quantization is to use the index of the codeword in the codebook that best matches the input vector for transmission and storage, while decoding only requires a simple table lookup operation. Its outstanding advantages are high compression ratio, simple decoding, and the ability to preserve signal details well. In this article, several VQ approaches are introduced for lossy compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信