{"title":"变指数空间上与Schrödinger算子相关的分数积分","authors":"Huali Wang, Ping Li","doi":"10.3934/era.2023345","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let $ \\mathcal{L} = -\\Delta+V $ be the Schrödinger operators on $ \\mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \\geq \\frac{n}{2} $. We prove the boundedness of fractional integral operator $ \\mathcal{I}_\\alpha $ related to the Schrödinger operators $ \\mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.</p></abstract>","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"31 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional integral associated with the Schrödinger operators on variable exponent space\",\"authors\":\"Huali Wang, Ping Li\",\"doi\":\"10.3934/era.2023345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Let $ \\\\mathcal{L} = -\\\\Delta+V $ be the Schrödinger operators on $ \\\\mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \\\\geq \\\\frac{n}{2} $. We prove the boundedness of fractional integral operator $ \\\\mathcal{I}_\\\\alpha $ related to the Schrödinger operators $ \\\\mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.</p></abstract>\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023345\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023345","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fractional integral associated with the Schrödinger operators on variable exponent space
Let $ \mathcal{L} = -\Delta+V $ be the Schrödinger operators on $ \mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \geq \frac{n}{2} $. We prove the boundedness of fractional integral operator $ \mathcal{I}_\alpha $ related to the Schrödinger operators $ \mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.