{"title":"变指数空间上与Schrödinger算子相关的分数积分","authors":"Huali Wang, Ping Li","doi":"10.3934/era.2023345","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let $ \\mathcal{L} = -\\Delta+V $ be the Schrödinger operators on $ \\mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \\geq \\frac{n}{2} $. We prove the boundedness of fractional integral operator $ \\mathcal{I}_\\alpha $ related to the Schrödinger operators $ \\mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional integral associated with the Schrödinger operators on variable exponent space\",\"authors\":\"Huali Wang, Ping Li\",\"doi\":\"10.3934/era.2023345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>Let $ \\\\mathcal{L} = -\\\\Delta+V $ be the Schrödinger operators on $ \\\\mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \\\\geq \\\\frac{n}{2} $. We prove the boundedness of fractional integral operator $ \\\\mathcal{I}_\\\\alpha $ related to the Schrödinger operators $ \\\\mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.</p></abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023345\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/era.2023345","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fractional integral associated with the Schrödinger operators on variable exponent space
Let $ \mathcal{L} = -\Delta+V $ be the Schrödinger operators on $ \mathbb{R}^n $ with nonnegative potential $ V $ belonging to the reverse Hölder class $ RH_q $ for some $ q \geq \frac{n}{2} $. We prove the boundedness of fractional integral operator $ \mathcal{I}_\alpha $ related to the Schrödinger operators $ \mathcal{L} $ from strong and weak variable exponent Lebesgue spaces into suitable variable exponent Lipschitz type spaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.