有界型Siegel参数中的Pacman重整化

IF 0.5 Q3 MATHEMATICS
Carlos Antonio Marin-Mendoza, Rogelio Valdez-Delgado
{"title":"有界型Siegel参数中的Pacman重整化","authors":"Carlos Antonio Marin-Mendoza, Rogelio Valdez-Delgado","doi":"10.4236/apm.2023.1310047","DOIUrl":null,"url":null,"abstract":"A novel method of renormalization called Pacman renormalization allows us to study (unicritical) Siegel functions through Pacman-type functions. It has been used to investigate the Siegel parameters with combinatorially periodic rotation number in the main cardioid of the Mandelbrot set. It is already known that it can be defined a Pacman renormalization operator such that for Siegel pacmen, with combinatorially periodic rotation numbers, the operator is compact, analytic and has a unique fixed point, at which it is hyperbolic with one-dimensional unstable manifold. In this paper we observe that this Pacman renormalization operator is compact and analytic at any Siegel Pacman or Siegel map with combinatorially bounded rotation number. This allows us to define a renormalization operator on the hybrid classes of the standard Siegel pacmen to which we built its horseshoe where the operator is topologically semiconjugated to the left shift on the space of bi-infinite sequences of natural numbers bounded by some constant.","PeriodicalId":43512,"journal":{"name":"Advances in Pure and Applied Mathematics","volume":"28 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pacman Renormalization in Siegel Parameters of Bounded Type\",\"authors\":\"Carlos Antonio Marin-Mendoza, Rogelio Valdez-Delgado\",\"doi\":\"10.4236/apm.2023.1310047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method of renormalization called Pacman renormalization allows us to study (unicritical) Siegel functions through Pacman-type functions. It has been used to investigate the Siegel parameters with combinatorially periodic rotation number in the main cardioid of the Mandelbrot set. It is already known that it can be defined a Pacman renormalization operator such that for Siegel pacmen, with combinatorially periodic rotation numbers, the operator is compact, analytic and has a unique fixed point, at which it is hyperbolic with one-dimensional unstable manifold. In this paper we observe that this Pacman renormalization operator is compact and analytic at any Siegel Pacman or Siegel map with combinatorially bounded rotation number. This allows us to define a renormalization operator on the hybrid classes of the standard Siegel pacmen to which we built its horseshoe where the operator is topologically semiconjugated to the left shift on the space of bi-infinite sequences of natural numbers bounded by some constant.\",\"PeriodicalId\":43512,\"journal\":{\"name\":\"Advances in Pure and Applied Mathematics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/apm.2023.1310047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/apm.2023.1310047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一种新的重整化方法叫做吃豆人重整化,它允许我们通过吃豆人类型的函数来研究(单临界)西格尔函数。利用该方法研究了Mandelbrot集主心线上具有组合周期旋转数的Siegel参数。已知可以定义一个Pacman重整算子,使得对于具有组合周期旋转数的Siegel pacmen,该算子紧致、解析且具有唯一不动点,该不动点为双曲的一维不稳定流形。在任何有组合有界旋转数的Siegel Pacman或Siegel映射上,我们观察到这个Pacman重整化算子是紧凑的和解析的。这允许我们在标准Siegel pacmen的混合类上定义一个重整化算子,我们在此基础上建立了它的马蹄形,该算子拓扑半共轭到由某个常数限定的双无穷自然数序列空间上的左移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pacman Renormalization in Siegel Parameters of Bounded Type
A novel method of renormalization called Pacman renormalization allows us to study (unicritical) Siegel functions through Pacman-type functions. It has been used to investigate the Siegel parameters with combinatorially periodic rotation number in the main cardioid of the Mandelbrot set. It is already known that it can be defined a Pacman renormalization operator such that for Siegel pacmen, with combinatorially periodic rotation numbers, the operator is compact, analytic and has a unique fixed point, at which it is hyperbolic with one-dimensional unstable manifold. In this paper we observe that this Pacman renormalization operator is compact and analytic at any Siegel Pacman or Siegel map with combinatorially bounded rotation number. This allows us to define a renormalization operator on the hybrid classes of the standard Siegel pacmen to which we built its horseshoe where the operator is topologically semiconjugated to the left shift on the space of bi-infinite sequences of natural numbers bounded by some constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信