{"title":"麦克斯韦方程组的Hermite-Taylor修正函数法","authors":"Yann-Meing Law, Daniel Appelö","doi":"10.1007/s42967-023-00287-5","DOIUrl":null,"url":null,"abstract":"The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, its widespread use has been prevented by the lack of a systematic approach to implementing boundary conditions. In this paper we present the Hermite-Taylor correction function method (CFM), which provides exactly such a systematic approach for handling boundary conditions. Here we focus on Maxwell’s equations but note that the method is easily extended to other hyperbolic problems.","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":"137 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hermite-Taylor Correction Function Method for Maxwell’s Equations\",\"authors\":\"Yann-Meing Law, Daniel Appelö\",\"doi\":\"10.1007/s42967-023-00287-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, its widespread use has been prevented by the lack of a systematic approach to implementing boundary conditions. In this paper we present the Hermite-Taylor correction function method (CFM), which provides exactly such a systematic approach for handling boundary conditions. Here we focus on Maxwell’s equations but note that the method is easily extended to other hyperbolic problems.\",\"PeriodicalId\":29916,\"journal\":{\"name\":\"Communications on Applied Mathematics and Computation\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42967-023-00287-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42967-023-00287-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Hermite-Taylor Correction Function Method for Maxwell’s Equations
The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, its widespread use has been prevented by the lack of a systematic approach to implementing boundary conditions. In this paper we present the Hermite-Taylor correction function method (CFM), which provides exactly such a systematic approach for handling boundary conditions. Here we focus on Maxwell’s equations but note that the method is easily extended to other hyperbolic problems.