麦克斯韦方程组的Hermite-Taylor修正函数法

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Yann-Meing Law, Daniel Appelö
{"title":"麦克斯韦方程组的Hermite-Taylor修正函数法","authors":"Yann-Meing Law, Daniel Appelö","doi":"10.1007/s42967-023-00287-5","DOIUrl":null,"url":null,"abstract":"The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, its widespread use has been prevented by the lack of a systematic approach to implementing boundary conditions. In this paper we present the Hermite-Taylor correction function method (CFM), which provides exactly such a systematic approach for handling boundary conditions. Here we focus on Maxwell’s equations but note that the method is easily extended to other hyperbolic problems.","PeriodicalId":29916,"journal":{"name":"Communications on Applied Mathematics and Computation","volume":"137 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hermite-Taylor Correction Function Method for Maxwell’s Equations\",\"authors\":\"Yann-Meing Law, Daniel Appelö\",\"doi\":\"10.1007/s42967-023-00287-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, its widespread use has been prevented by the lack of a systematic approach to implementing boundary conditions. In this paper we present the Hermite-Taylor correction function method (CFM), which provides exactly such a systematic approach for handling boundary conditions. Here we focus on Maxwell’s equations but note that the method is easily extended to other hyperbolic problems.\",\"PeriodicalId\":29916,\"journal\":{\"name\":\"Communications on Applied Mathematics and Computation\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Mathematics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42967-023-00287-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42967-023-00287-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由Goodrich等人于2005年引入的Hermite-Taylor方法在应用于周期域上的线性双曲型系统时是高效和精确的。不幸的是,由于缺乏执行边界条件的系统方法,它的广泛使用受到了阻碍。在本文中,我们提出了Hermite-Taylor修正函数法(CFM),它正好提供了这样一种处理边界条件的系统方法。这里我们着重于麦克斯韦方程组,但注意到该方法很容易推广到其他双曲问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hermite-Taylor Correction Function Method for Maxwell’s Equations
The Hermite-Taylor method, introduced in 2005 by Goodrich et al. is highly efficient and accurate when applied to linear hyperbolic systems on periodic domains. Unfortunately, its widespread use has been prevented by the lack of a systematic approach to implementing boundary conditions. In this paper we present the Hermite-Taylor correction function method (CFM), which provides exactly such a systematic approach for handling boundary conditions. Here we focus on Maxwell’s equations but note that the method is easily extended to other hyperbolic problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.20%
发文量
523
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信