Francesco Bianconi, Claudio Cusano, Paolo Napoletano, Raimondo Schettini
{"title":"基于卷积神经网络的Gabor纹理特征优化","authors":"Francesco Bianconi, Claudio Cusano, Paolo Napoletano, Raimondo Schettini","doi":"10.2352/lim.2023.4.1.28","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel technique that allows for customized Gabor texture features by leveraging deep learning neural networks. Our method involves using a Convolutional Neural Network to refactor traditional, hand-designed filters on specific datasets. The refactored filters can be used in an off-the-shelf manner with the same computational cost but significantly improved accuracy for material recognition. We demonstrate the effectiveness of our approach by reporting a gain in discriminatio accuracy on different material datasets. Our technique is particularly appealing in situations where the use of the entire CNN would be inadequate, such as analyzing non-square images or performing segmentation tasks. Overall, our approach provides a powerful tool for improving the accuracy of material recognition tasks while retaining the advantages of handcrafted filters.","PeriodicalId":89080,"journal":{"name":"Archiving : final program and proceedings. IS & T's Archiving Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Gabor Texture Features for Materials Recognition by Convolutional Neural Networks\",\"authors\":\"Francesco Bianconi, Claudio Cusano, Paolo Napoletano, Raimondo Schettini\",\"doi\":\"10.2352/lim.2023.4.1.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel technique that allows for customized Gabor texture features by leveraging deep learning neural networks. Our method involves using a Convolutional Neural Network to refactor traditional, hand-designed filters on specific datasets. The refactored filters can be used in an off-the-shelf manner with the same computational cost but significantly improved accuracy for material recognition. We demonstrate the effectiveness of our approach by reporting a gain in discriminatio accuracy on different material datasets. Our technique is particularly appealing in situations where the use of the entire CNN would be inadequate, such as analyzing non-square images or performing segmentation tasks. Overall, our approach provides a powerful tool for improving the accuracy of material recognition tasks while retaining the advantages of handcrafted filters.\",\"PeriodicalId\":89080,\"journal\":{\"name\":\"Archiving : final program and proceedings. IS & T's Archiving Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiving : final program and proceedings. IS & T's Archiving Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2352/lim.2023.4.1.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiving : final program and proceedings. IS & T's Archiving Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/lim.2023.4.1.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Gabor Texture Features for Materials Recognition by Convolutional Neural Networks
In this paper, we present a novel technique that allows for customized Gabor texture features by leveraging deep learning neural networks. Our method involves using a Convolutional Neural Network to refactor traditional, hand-designed filters on specific datasets. The refactored filters can be used in an off-the-shelf manner with the same computational cost but significantly improved accuracy for material recognition. We demonstrate the effectiveness of our approach by reporting a gain in discriminatio accuracy on different material datasets. Our technique is particularly appealing in situations where the use of the entire CNN would be inadequate, such as analyzing non-square images or performing segmentation tasks. Overall, our approach provides a powerful tool for improving the accuracy of material recognition tasks while retaining the advantages of handcrafted filters.