具有Gompertz生长和群体行为的捕食-食饵系统的复杂动力学

IF 0.7 Q2 MATHEMATICS
Rizwan Ahmed, M. B. Almatrafi
{"title":"具有Gompertz生长和群体行为的捕食-食饵系统的复杂动力学","authors":"Rizwan Ahmed, M. B. Almatrafi","doi":"10.28924/2291-8639-21-2023-100","DOIUrl":null,"url":null,"abstract":"The complex dynamics of a predator-prey system in discrete time are studied. In this system, we consider the prey’s Gompertz growth and the square-root functional response. The existence of fixed points and stability are examined. Using the center manifold and bifurcation theory, we found that the system undergoes transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. In addition, numerical examples are presented to illustrate the consistency of the analytical findings. The bifurcation diagrams show that the positive fixed point is stable if the death rate of the predator is greater than a threshold value. Biologically, it means that to prevent the predator population from growing uncontrollably and stability of the positive fixed point, the predator’s death rate should be greater than the threshold value.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complex Dynamics of a Predator-Prey System With Gompertz Growth and Herd Behavior\",\"authors\":\"Rizwan Ahmed, M. B. Almatrafi\",\"doi\":\"10.28924/2291-8639-21-2023-100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex dynamics of a predator-prey system in discrete time are studied. In this system, we consider the prey’s Gompertz growth and the square-root functional response. The existence of fixed points and stability are examined. Using the center manifold and bifurcation theory, we found that the system undergoes transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. In addition, numerical examples are presented to illustrate the consistency of the analytical findings. The bifurcation diagrams show that the positive fixed point is stable if the death rate of the predator is greater than a threshold value. Biologically, it means that to prevent the predator population from growing uncontrollably and stability of the positive fixed point, the predator’s death rate should be greater than the threshold value.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了离散时间捕食系统的复杂动力学问题。在这个系统中,我们考虑了猎物的Gompertz生长和平方根函数响应。检验了不动点的存在性和稳定性。利用中心流形和分岔理论,我们发现该系统存在跨临界分岔、倍周期分岔和neimmark - sacker分岔。此外,数值算例说明了分析结果的一致性。分岔图表明,当捕食者的死亡率大于一个阈值时,正不动点是稳定的。从生物学上讲,它是指为了防止捕食者种群不受控制地增长和稳定正不动点,捕食者的死亡率应该大于阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex Dynamics of a Predator-Prey System With Gompertz Growth and Herd Behavior
The complex dynamics of a predator-prey system in discrete time are studied. In this system, we consider the prey’s Gompertz growth and the square-root functional response. The existence of fixed points and stability are examined. Using the center manifold and bifurcation theory, we found that the system undergoes transcritical bifurcation, period-doubling bifurcation, and Neimark-Sacker bifurcation. In addition, numerical examples are presented to illustrate the consistency of the analytical findings. The bifurcation diagrams show that the positive fixed point is stable if the death rate of the predator is greater than a threshold value. Biologically, it means that to prevent the predator population from growing uncontrollably and stability of the positive fixed point, the predator’s death rate should be greater than the threshold value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信