Stephanie A Terry, Vicky Garcia, Karen A Beauchemin
{"title":"利用体外分批培养评估加拿大红海藻的甲烷减排潜力","authors":"Stephanie A Terry, Vicky Garcia, Karen A Beauchemin","doi":"10.1139/cjas-2023-0063","DOIUrl":null,"url":null,"abstract":"Seven red Canadian seaweeds ( Callophyllis flabellulata, Graciliariopsis verrucosa, Mastocarpus papillatus, Mazzaella splendens, Mazzaella japonica, Palmaria mollis, and Prionitis lanceolata) and a positive control ( Asparagopsis taxiformis) were selected to evaluate their chemical and elemental composition and their effects on in vitro fermentation and methane (CH 4 ) production in an alfalfa hay or barley straw diet. The in vitro batch culture was conducted as a completely randomised design with a control (alfalfa hay or barley straw) and seven increasing concentrations of seaweed. Chemical and elemental composition varied greatly across seaweed genera. Increasing supplementation of A. taxiformis linearly decreased ( P < 0.001) dry matter disappearance (DMD) and gas production (GP; mL, mL/g DMD) with CH 4 production eliminated ( P < 0.001) at 1.0% inclusion of A. taxiformis in both diets. Inclusion of Mastocarpus papillatus, Mazzaella japonica, Mazzaella splendens, Palmaria mollis, and Prionitis lanceolata increased ( P ≤ 0.05) GP (mL/g DMD) at 0.5% and 1.0% in alfalfa diets. Graciliariopsis verrucosa linearly decreased ( P = 0.01) CH 4 production (mL/g DMD) in the straw diet, but no doses were different compared to the control. In conclusion, the Canadian red seaweeds examined in this study did not exhibit anti-methanogenic potential when incubated with alfalfa hay or barley straw.","PeriodicalId":9512,"journal":{"name":"Canadian Journal of Animal Science","volume":"121 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the methane mitigation potential of Canadian red seaweeds using in vitro batch culture\",\"authors\":\"Stephanie A Terry, Vicky Garcia, Karen A Beauchemin\",\"doi\":\"10.1139/cjas-2023-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seven red Canadian seaweeds ( Callophyllis flabellulata, Graciliariopsis verrucosa, Mastocarpus papillatus, Mazzaella splendens, Mazzaella japonica, Palmaria mollis, and Prionitis lanceolata) and a positive control ( Asparagopsis taxiformis) were selected to evaluate their chemical and elemental composition and their effects on in vitro fermentation and methane (CH 4 ) production in an alfalfa hay or barley straw diet. The in vitro batch culture was conducted as a completely randomised design with a control (alfalfa hay or barley straw) and seven increasing concentrations of seaweed. Chemical and elemental composition varied greatly across seaweed genera. Increasing supplementation of A. taxiformis linearly decreased ( P < 0.001) dry matter disappearance (DMD) and gas production (GP; mL, mL/g DMD) with CH 4 production eliminated ( P < 0.001) at 1.0% inclusion of A. taxiformis in both diets. Inclusion of Mastocarpus papillatus, Mazzaella japonica, Mazzaella splendens, Palmaria mollis, and Prionitis lanceolata increased ( P ≤ 0.05) GP (mL/g DMD) at 0.5% and 1.0% in alfalfa diets. Graciliariopsis verrucosa linearly decreased ( P = 0.01) CH 4 production (mL/g DMD) in the straw diet, but no doses were different compared to the control. In conclusion, the Canadian red seaweeds examined in this study did not exhibit anti-methanogenic potential when incubated with alfalfa hay or barley straw.\",\"PeriodicalId\":9512,\"journal\":{\"name\":\"Canadian Journal of Animal Science\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cjas-2023-0063\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cjas-2023-0063","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Assessing the methane mitigation potential of Canadian red seaweeds using in vitro batch culture
Seven red Canadian seaweeds ( Callophyllis flabellulata, Graciliariopsis verrucosa, Mastocarpus papillatus, Mazzaella splendens, Mazzaella japonica, Palmaria mollis, and Prionitis lanceolata) and a positive control ( Asparagopsis taxiformis) were selected to evaluate their chemical and elemental composition and their effects on in vitro fermentation and methane (CH 4 ) production in an alfalfa hay or barley straw diet. The in vitro batch culture was conducted as a completely randomised design with a control (alfalfa hay or barley straw) and seven increasing concentrations of seaweed. Chemical and elemental composition varied greatly across seaweed genera. Increasing supplementation of A. taxiformis linearly decreased ( P < 0.001) dry matter disappearance (DMD) and gas production (GP; mL, mL/g DMD) with CH 4 production eliminated ( P < 0.001) at 1.0% inclusion of A. taxiformis in both diets. Inclusion of Mastocarpus papillatus, Mazzaella japonica, Mazzaella splendens, Palmaria mollis, and Prionitis lanceolata increased ( P ≤ 0.05) GP (mL/g DMD) at 0.5% and 1.0% in alfalfa diets. Graciliariopsis verrucosa linearly decreased ( P = 0.01) CH 4 production (mL/g DMD) in the straw diet, but no doses were different compared to the control. In conclusion, the Canadian red seaweeds examined in this study did not exhibit anti-methanogenic potential when incubated with alfalfa hay or barley straw.
期刊介绍:
Published since 1957, this quarterly journal contains new research on all aspects of animal agriculture and animal products, including breeding and genetics; cellular and molecular biology; growth and development; meat science; modelling animal systems; physiology and endocrinology; ruminant nutrition; non-ruminant nutrition; and welfare, behaviour, and management. It also publishes reviews, letters to the editor, abstracts of technical papers presented at the annual meeting of the Canadian Society of Animal Science, and occasionally conference proceedings.