面积最小电流内部奇异集的上闵可夫斯基维估计

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Anna Skorobogatova
{"title":"面积最小电流内部奇异集的上闵可夫斯基维估计","authors":"Anna Skorobogatova","doi":"10.1002/cpa.22165","DOIUrl":null,"url":null,"abstract":"<p>We show that for an area minimizing <i>m</i>-dimensional integral current <i>T</i> of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$m-2$</annotation>\n </semantics></math>. This provides a strengthening of the existing <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(m-2)$</annotation>\n </semantics></math>-dimensional Hausdorff dimension bound due to Almgren and De Lellis &amp; Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate <i>T</i> along blow-up scales.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper Minkowski dimension estimate for the interior singular set of area minimizing currents\",\"authors\":\"Anna Skorobogatova\",\"doi\":\"10.1002/cpa.22165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for an area minimizing <i>m</i>-dimensional integral current <i>T</i> of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$m-2$</annotation>\\n </semantics></math>. This provides a strengthening of the existing <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(m-2)$</annotation>\\n </semantics></math>-dimensional Hausdorff dimension bound due to Almgren and De Lellis &amp; Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate <i>T</i> along blow-up scales.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22165\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22165","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在一个充分正则黎曼流形中,对于余维至少为2的m维积分电流T的面积最小化,内部奇异集的上闵可夫斯基维不超过m-2$ m-2$。这提供了现有的(m−2)$ (m-2)$维Hausdorff维界由于Almgren和De Lellis &;斯巴达罗。作为证明的一个副产品,我们建立了一个关于沿膨胀尺度近似T的中心流形序列上奇点持久性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An upper Minkowski dimension estimate for the interior singular set of area minimizing currents

We show that for an area minimizing m-dimensional integral current T of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most m 2 $m-2$ . This provides a strengthening of the existing ( m 2 ) $(m-2)$ -dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate T along blow-up scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信