{"title":"面积最小电流内部奇异集的上闵可夫斯基维估计","authors":"Anna Skorobogatova","doi":"10.1002/cpa.22165","DOIUrl":null,"url":null,"abstract":"<p>We show that for an area minimizing <i>m</i>-dimensional integral current <i>T</i> of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$m-2$</annotation>\n </semantics></math>. This provides a strengthening of the existing <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>m</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(m-2)$</annotation>\n </semantics></math>-dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate <i>T</i> along blow-up scales.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper Minkowski dimension estimate for the interior singular set of area minimizing currents\",\"authors\":\"Anna Skorobogatova\",\"doi\":\"10.1002/cpa.22165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for an area minimizing <i>m</i>-dimensional integral current <i>T</i> of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$m-2$</annotation>\\n </semantics></math>. This provides a strengthening of the existing <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(m-2)$</annotation>\\n </semantics></math>-dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate <i>T</i> along blow-up scales.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22165\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22165","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An upper Minkowski dimension estimate for the interior singular set of area minimizing currents
We show that for an area minimizing m-dimensional integral current T of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most . This provides a strengthening of the existing -dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate T along blow-up scales.