上一维轮轴的新模空间

Pub Date : 2023-09-18 DOI:10.1017/nmj.2023.26
DAPENG MU
{"title":"上一维轮轴的新模空间","authors":"DAPENG MU","doi":"10.1017/nmj.2023.26","DOIUrl":null,"url":null,"abstract":"Abstract We define a one-dimensional family of Bridgeland stability conditions on $\\mathbb {P}^n$ , named “Euler” stability condition. We conjecture that the “Euler” stability condition converges to Gieseker stability for coherent sheaves. Here, we focus on ${\\mathbb P}^3$ , first identifying Euler stability conditions with double-tilt stability conditions, and then we consider moduli of one-dimensional sheaves, proving some asymptotic results, boundedness for walls, and then explicitly computing walls and wall-crossings for sheaves supported on rational curves of degrees $3$ and $4$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEW MODULI SPACES OF ONE-DIMENSIONAL SHEAVES ON\",\"authors\":\"DAPENG MU\",\"doi\":\"10.1017/nmj.2023.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We define a one-dimensional family of Bridgeland stability conditions on $\\\\mathbb {P}^n$ , named “Euler” stability condition. We conjecture that the “Euler” stability condition converges to Gieseker stability for coherent sheaves. Here, we focus on ${\\\\mathbb P}^3$ , first identifying Euler stability conditions with double-tilt stability conditions, and then we consider moduli of one-dimensional sheaves, proving some asymptotic results, boundedness for walls, and then explicitly computing walls and wall-crossings for sheaves supported on rational curves of degrees $3$ and $4$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nmj.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在$\mathbb {P}^n$上定义了一类一维桥地稳定性条件,称为“欧拉”稳定性条件。我们推测相干轴的“欧拉”稳定性条件收敛于Gieseker稳定性。本文以${\mathbb P}^3$为中心,首先确定了具有双倾斜稳定性条件的欧拉稳定条件,然后考虑了一维滑轮的模,证明了一些渐近结果,证明了墙体的有界性,然后显式地计算了在$3$和$4$有理曲线上支撑的滑轮的墙体和过墙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
NEW MODULI SPACES OF ONE-DIMENSIONAL SHEAVES ON
Abstract We define a one-dimensional family of Bridgeland stability conditions on $\mathbb {P}^n$ , named “Euler” stability condition. We conjecture that the “Euler” stability condition converges to Gieseker stability for coherent sheaves. Here, we focus on ${\mathbb P}^3$ , first identifying Euler stability conditions with double-tilt stability conditions, and then we consider moduli of one-dimensional sheaves, proving some asymptotic results, boundedness for walls, and then explicitly computing walls and wall-crossings for sheaves supported on rational curves of degrees $3$ and $4$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信