基于机器翻译的英语翻译错误特征分析与纠错研究

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Guifang Tao
{"title":"基于机器翻译的英语翻译错误特征分析与纠错研究","authors":"Guifang Tao","doi":"10.31449/inf.v47i8.4862","DOIUrl":null,"url":null,"abstract":"English translation is the most frequently encountered problem in English learning, and fast, efficient and correct English translation has become the demand of many people. This paper studied the most frequently encountered English grammatical error problem in English translation by the Transformer grammatical error correction model in machine translation and explored whether machine translation could analyze the features of the errors that may occur in English translation and correct them. The results of the study showed that the precision of the Transformer model reached 93.64%, the recall rate reached 94.01%, the value was 2.35, and the value of Bilingual Evaluation Understudy was 0.94, which were better than those of the other three models. The Transformer model also showed stronger error correction performance than Seq2seq, convolutional neural network, and recurrent neural network models in analyzing error correction instances of English translation. This paper proves that it is feasible and practical to identify and correct English translation errors by machine translation based on the Transformer model.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"83 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Error Feature Analysis and Error Correction in English Translation Through Machine Translatio\",\"authors\":\"Guifang Tao\",\"doi\":\"10.31449/inf.v47i8.4862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"English translation is the most frequently encountered problem in English learning, and fast, efficient and correct English translation has become the demand of many people. This paper studied the most frequently encountered English grammatical error problem in English translation by the Transformer grammatical error correction model in machine translation and explored whether machine translation could analyze the features of the errors that may occur in English translation and correct them. The results of the study showed that the precision of the Transformer model reached 93.64%, the recall rate reached 94.01%, the value was 2.35, and the value of Bilingual Evaluation Understudy was 0.94, which were better than those of the other three models. The Transformer model also showed stronger error correction performance than Seq2seq, convolutional neural network, and recurrent neural network models in analyzing error correction instances of English translation. This paper proves that it is feasible and practical to identify and correct English translation errors by machine translation based on the Transformer model.\",\"PeriodicalId\":56292,\"journal\":{\"name\":\"Informatica\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31449/inf.v47i8.4862\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i8.4862","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

英语翻译是英语学习中最常遇到的问题,快速、高效、正确的英语翻译已经成为很多人的需求。本文通过机器翻译中的Transformer语法纠错模型对英语翻译中最常遇到的英语语法错误问题进行了研究,探讨机器翻译是否能够分析英语翻译中可能出现的错误特征并进行纠正。研究结果表明,变压器模型的准确率达到93.64%,召回率达到94.01%,值为2.35,双语评价替补的值为0.94,均优于其他三种模型。在分析英语翻译纠错实例时,Transformer模型也表现出比Seq2seq、卷积神经网络和递归神经网络模型更强的纠错性能。本文证明了基于Transformer模型的机器翻译识别和纠正英语翻译错误的可行性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Error Feature Analysis and Error Correction in English Translation Through Machine Translatio
English translation is the most frequently encountered problem in English learning, and fast, efficient and correct English translation has become the demand of many people. This paper studied the most frequently encountered English grammatical error problem in English translation by the Transformer grammatical error correction model in machine translation and explored whether machine translation could analyze the features of the errors that may occur in English translation and correct them. The results of the study showed that the precision of the Transformer model reached 93.64%, the recall rate reached 94.01%, the value was 2.35, and the value of Bilingual Evaluation Understudy was 0.94, which were better than those of the other three models. The Transformer model also showed stronger error correction performance than Seq2seq, convolutional neural network, and recurrent neural network models in analyzing error correction instances of English translation. This paper proves that it is feasible and practical to identify and correct English translation errors by machine translation based on the Transformer model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信