Jie Chen, Daniel Scharfstein, Hongwei Wang, Binbing Yu, Yang Song, Weili He, John Scott, Xiwu Lin, Hana Lee
{"title":"真实世界证据研究中的估计","authors":"Jie Chen, Daniel Scharfstein, Hongwei Wang, Binbing Yu, Yang Song, Weili He, John Scott, Xiwu Lin, Hana Lee","doi":"10.1080/19466315.2023.2259829","DOIUrl":null,"url":null,"abstract":"AbstractA Real-World Evidence (RWE) Scientific Working Group (SWG) of the American Statistical Association Biopharmaceutical Section (ASA BIOP) has been reviewing statistical considerations for the generation of RWE to support regulatory decision-making. As part of the effort, the working group is addressing estimands in RWE studies. Constructing the right estimand—the target of estimation—which reflects the research question and the study objective, is one of the key components in formulating a clinical study. ICH E9(R1) describes statistical principles for constructing estimands in clinical trials with a focus on five attributes—population, treatment, endpoints, intercurrent events, and population-level summary. However, defining estimands for clinical studies using real-world data (RWD), i.e., RWE studies, requires additional considerations due to, for example, heterogeneity of study population, complexity of treatment regimes, different types and patterns of intercurrent events, and complexities in choosing study endpoints. This paper reviews the essential components of estimands and causal inference framework, discusses considerations in constructing estimands for RWE studies, highlights similarities and differences in traditional clinical trial and RWE study estimands, and provides a roadmap for choosing appropriate estimands for RWE studies.Key words: Real-world evidencereal-world dataestimandestimand frameworkDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. FundingThe author(s) reported there is no funding associated with the work featured in this article.","PeriodicalId":51280,"journal":{"name":"Statistics in Biopharmaceutical Research","volume":"1 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimands in Real-World Evidence Studies\",\"authors\":\"Jie Chen, Daniel Scharfstein, Hongwei Wang, Binbing Yu, Yang Song, Weili He, John Scott, Xiwu Lin, Hana Lee\",\"doi\":\"10.1080/19466315.2023.2259829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractA Real-World Evidence (RWE) Scientific Working Group (SWG) of the American Statistical Association Biopharmaceutical Section (ASA BIOP) has been reviewing statistical considerations for the generation of RWE to support regulatory decision-making. As part of the effort, the working group is addressing estimands in RWE studies. Constructing the right estimand—the target of estimation—which reflects the research question and the study objective, is one of the key components in formulating a clinical study. ICH E9(R1) describes statistical principles for constructing estimands in clinical trials with a focus on five attributes—population, treatment, endpoints, intercurrent events, and population-level summary. However, defining estimands for clinical studies using real-world data (RWD), i.e., RWE studies, requires additional considerations due to, for example, heterogeneity of study population, complexity of treatment regimes, different types and patterns of intercurrent events, and complexities in choosing study endpoints. This paper reviews the essential components of estimands and causal inference framework, discusses considerations in constructing estimands for RWE studies, highlights similarities and differences in traditional clinical trial and RWE study estimands, and provides a roadmap for choosing appropriate estimands for RWE studies.Key words: Real-world evidencereal-world dataestimandestimand frameworkDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. FundingThe author(s) reported there is no funding associated with the work featured in this article.\",\"PeriodicalId\":51280,\"journal\":{\"name\":\"Statistics in Biopharmaceutical Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Biopharmaceutical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19466315.2023.2259829\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Biopharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19466315.2023.2259829","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
AbstractA Real-World Evidence (RWE) Scientific Working Group (SWG) of the American Statistical Association Biopharmaceutical Section (ASA BIOP) has been reviewing statistical considerations for the generation of RWE to support regulatory decision-making. As part of the effort, the working group is addressing estimands in RWE studies. Constructing the right estimand—the target of estimation—which reflects the research question and the study objective, is one of the key components in formulating a clinical study. ICH E9(R1) describes statistical principles for constructing estimands in clinical trials with a focus on five attributes—population, treatment, endpoints, intercurrent events, and population-level summary. However, defining estimands for clinical studies using real-world data (RWD), i.e., RWE studies, requires additional considerations due to, for example, heterogeneity of study population, complexity of treatment regimes, different types and patterns of intercurrent events, and complexities in choosing study endpoints. This paper reviews the essential components of estimands and causal inference framework, discusses considerations in constructing estimands for RWE studies, highlights similarities and differences in traditional clinical trial and RWE study estimands, and provides a roadmap for choosing appropriate estimands for RWE studies.Key words: Real-world evidencereal-world dataestimandestimand frameworkDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. FundingThe author(s) reported there is no funding associated with the work featured in this article.
期刊介绍:
Statistics in Biopharmaceutical Research ( SBR), publishes articles that focus on the needs of researchers and applied statisticians in biopharmaceutical industries; academic biostatisticians from schools of medicine, veterinary medicine, public health, and pharmacy; statisticians and quantitative analysts working in regulatory agencies (e.g., U.S. Food and Drug Administration and its counterpart in other countries); statisticians with an interest in adopting methodology presented in this journal to their own fields; and nonstatisticians with an interest in applying statistical methods to biopharmaceutical problems.
Statistics in Biopharmaceutical Research accepts papers that discuss appropriate statistical methodology and information regarding the use of statistics in all phases of research, development, and practice in the pharmaceutical, biopharmaceutical, device, and diagnostics industries. Articles should focus on the development of novel statistical methods, novel applications of current methods, or the innovative application of statistical principles that can be used by statistical practitioners in these disciplines. Areas of application may include statistical methods for drug discovery, including papers that address issues of multiplicity, sequential trials, adaptive designs, etc.; preclinical and clinical studies; genomics and proteomics; bioassay; biomarkers and surrogate markers; models and analyses of drug history, including pharmacoeconomics, product life cycle, detection of adverse events in clinical studies, and postmarketing risk assessment; regulatory guidelines, including issues of standardization of terminology (e.g., CDISC), tolerance and specification limits related to pharmaceutical practice, and novel methods of drug approval; and detection of adverse events in clinical and toxicological studies. Tutorial articles also are welcome. Articles should include demonstrable evidence of the usefulness of this methodology (presumably by means of an application).
The Editorial Board of SBR intends to ensure that the journal continually provides important, useful, and timely information. To accomplish this, the board strives to attract outstanding articles by seeing that each submission receives a careful, thorough, and prompt review.
Authors can choose to publish gold open access in this journal.