Juho Timonen, Nikolas Siccha, Ben Bales, Harri Lähdesmäki, Aki Vehtari
{"title":"贝叶斯常微分方程模型可靠有效推理的重要抽样方法","authors":"Juho Timonen, Nikolas Siccha, Ben Bales, Harri Lähdesmäki, Aki Vehtari","doi":"10.1002/sta4.614","DOIUrl":null,"url":null,"abstract":"Statistical models can involve implicitly defined quantities, such as solutions to nonlinear ordinary differential equations (ODEs), that unavoidably need to be numerically approximated in order to evaluate the model. The approximation error inherently biases statistical inference results, but the amount of this bias is generally unknown and often ignored in Bayesian parameter inference. We propose a computationally efficient method for verifying the reliability of posterior inference for such models, when the inference is performed using Markov chain Monte Carlo methods. We validate the efficiency and reliability of our workflow in experiments using simulated and real data and different ODE solvers. We highlight problems that arise with commonly used adaptive ODE solvers and propose robust and effective alternatives, which, accompanied by our workflow, can now be taken into use without losing reliability of the inferences.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"185 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models\",\"authors\":\"Juho Timonen, Nikolas Siccha, Ben Bales, Harri Lähdesmäki, Aki Vehtari\",\"doi\":\"10.1002/sta4.614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical models can involve implicitly defined quantities, such as solutions to nonlinear ordinary differential equations (ODEs), that unavoidably need to be numerically approximated in order to evaluate the model. The approximation error inherently biases statistical inference results, but the amount of this bias is generally unknown and often ignored in Bayesian parameter inference. We propose a computationally efficient method for verifying the reliability of posterior inference for such models, when the inference is performed using Markov chain Monte Carlo methods. We validate the efficiency and reliability of our workflow in experiments using simulated and real data and different ODE solvers. We highlight problems that arise with commonly used adaptive ODE solvers and propose robust and effective alternatives, which, accompanied by our workflow, can now be taken into use without losing reliability of the inferences.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.614\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sta4.614","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models
Statistical models can involve implicitly defined quantities, such as solutions to nonlinear ordinary differential equations (ODEs), that unavoidably need to be numerically approximated in order to evaluate the model. The approximation error inherently biases statistical inference results, but the amount of this bias is generally unknown and often ignored in Bayesian parameter inference. We propose a computationally efficient method for verifying the reliability of posterior inference for such models, when the inference is performed using Markov chain Monte Carlo methods. We validate the efficiency and reliability of our workflow in experiments using simulated and real data and different ODE solvers. We highlight problems that arise with commonly used adaptive ODE solvers and propose robust and effective alternatives, which, accompanied by our workflow, can now be taken into use without losing reliability of the inferences.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.