Chuanzhi Cui, Yin Qian, Zhongwei Wu, Shuiqingshan Lu, Jiajie He
{"title":"基于归一化互信息和Seq2Seq-LSTM的储层时空数据驱动产量预测","authors":"Chuanzhi Cui, Yin Qian, Zhongwei Wu, Shuiqingshan Lu, Jiajie He","doi":"10.1177/01445987231188161","DOIUrl":null,"url":null,"abstract":"Traditional machine learning methods are difficult to accurately forecast oil production when development measures change. A method of oil reservoir production prediction based on normalized mutual information and a long short-term memory-based sequence-to-sequence model (Seq2Seq-LSTM) was proposed to forecast reservoir production considering the influence of liquid production and well spacing density. First, the marine sandstone reservoirs in the Y basin were taken as the research object to establish the sample database. Then, the feature selection was carried out according to the normalized mutual information, and liquid production, production time, equivalent well spacing density, fluidity and original formation pressure were determined as input features. Finally, a Seq2Seq-LSTM model was established to forecast reservoir production by learning the interaction from multiple samples and multiple sequences, and mining the relationship between oil production and features. The research showed that the model has a high accuracy of production prediction and can forecast the change of production when the liquid production and well spacing density change, which can provide scientific recommendations to help the oilfield develop and adjust efficiently.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"30 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting of oil production driven by reservoir spatial–temporal data based on normalized mutual information and Seq2Seq-LSTM\",\"authors\":\"Chuanzhi Cui, Yin Qian, Zhongwei Wu, Shuiqingshan Lu, Jiajie He\",\"doi\":\"10.1177/01445987231188161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional machine learning methods are difficult to accurately forecast oil production when development measures change. A method of oil reservoir production prediction based on normalized mutual information and a long short-term memory-based sequence-to-sequence model (Seq2Seq-LSTM) was proposed to forecast reservoir production considering the influence of liquid production and well spacing density. First, the marine sandstone reservoirs in the Y basin were taken as the research object to establish the sample database. Then, the feature selection was carried out according to the normalized mutual information, and liquid production, production time, equivalent well spacing density, fluidity and original formation pressure were determined as input features. Finally, a Seq2Seq-LSTM model was established to forecast reservoir production by learning the interaction from multiple samples and multiple sequences, and mining the relationship between oil production and features. The research showed that the model has a high accuracy of production prediction and can forecast the change of production when the liquid production and well spacing density change, which can provide scientific recommendations to help the oilfield develop and adjust efficiently.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231188161\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231188161","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Forecasting of oil production driven by reservoir spatial–temporal data based on normalized mutual information and Seq2Seq-LSTM
Traditional machine learning methods are difficult to accurately forecast oil production when development measures change. A method of oil reservoir production prediction based on normalized mutual information and a long short-term memory-based sequence-to-sequence model (Seq2Seq-LSTM) was proposed to forecast reservoir production considering the influence of liquid production and well spacing density. First, the marine sandstone reservoirs in the Y basin were taken as the research object to establish the sample database. Then, the feature selection was carried out according to the normalized mutual information, and liquid production, production time, equivalent well spacing density, fluidity and original formation pressure were determined as input features. Finally, a Seq2Seq-LSTM model was established to forecast reservoir production by learning the interaction from multiple samples and multiple sequences, and mining the relationship between oil production and features. The research showed that the model has a high accuracy of production prediction and can forecast the change of production when the liquid production and well spacing density change, which can provide scientific recommendations to help the oilfield develop and adjust efficiently.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.