Endah Yuniarti, S Afandi Sitompul, B Aji Warsiyanto
{"title":"用耦合欧拉-拉格朗日方法模拟半球端圆柱形鸟模型中不同L/D比的鸟击","authors":"Endah Yuniarti, S Afandi Sitompul, B Aji Warsiyanto","doi":"10.25077/jfu.12.4.628-638.2023","DOIUrl":null,"url":null,"abstract":"This research studies the numerical simulation of the finite element method for bird strike using a hemispherical-ended cylinder bird model with varying length-to-diameter (L/D) ratio, namely 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; and 2.0. Birds are modelled with elastic, plastic, and hydrodynamic behaviour. The bird model uses the Coupled Eulerian-Lagrangian (CEL) method with impact speeds of 100 ms-1, 200 ms-1, and 300 ms-1. The simulation results show that the Hugoniot pressure value is around 15-36 times higher than stagnation pressure in L/D 1.4; 14-36 times in L/D 1.5; 13-30 times in L/D 1.6; 12-32 times in L/D 1.7; 12-26 times in L/D 1.8; 13-30 times in L/D 1.9; and 13-29 times in L/D 2.0. It was found that the highest Hugoniot and stagnation pressure were in L/D 1.5 and 1.8, while the lowest Hugoniot and stagnation pressure were in L/D 2.0 and 1.5, respectively. In addition, the error of the numerical results of the average Hugoniot and stagnation pressure value compared to the analytic was 2.9% and 7%, respectively.","PeriodicalId":497807,"journal":{"name":"Jurnal Fisika Unand","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Bird Strike with Varied L/D Ratio in Hemispherical-ended Cylinder Bird Model Using Coupled Eulerian Lagrangian Method\",\"authors\":\"Endah Yuniarti, S Afandi Sitompul, B Aji Warsiyanto\",\"doi\":\"10.25077/jfu.12.4.628-638.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research studies the numerical simulation of the finite element method for bird strike using a hemispherical-ended cylinder bird model with varying length-to-diameter (L/D) ratio, namely 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; and 2.0. Birds are modelled with elastic, plastic, and hydrodynamic behaviour. The bird model uses the Coupled Eulerian-Lagrangian (CEL) method with impact speeds of 100 ms-1, 200 ms-1, and 300 ms-1. The simulation results show that the Hugoniot pressure value is around 15-36 times higher than stagnation pressure in L/D 1.4; 14-36 times in L/D 1.5; 13-30 times in L/D 1.6; 12-32 times in L/D 1.7; 12-26 times in L/D 1.8; 13-30 times in L/D 1.9; and 13-29 times in L/D 2.0. It was found that the highest Hugoniot and stagnation pressure were in L/D 1.5 and 1.8, while the lowest Hugoniot and stagnation pressure were in L/D 2.0 and 1.5, respectively. In addition, the error of the numerical results of the average Hugoniot and stagnation pressure value compared to the analytic was 2.9% and 7%, respectively.\",\"PeriodicalId\":497807,\"journal\":{\"name\":\"Jurnal Fisika Unand\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Fisika Unand\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jfu.12.4.628-638.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Fisika Unand","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jfu.12.4.628-638.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Simulation of Bird Strike with Varied L/D Ratio in Hemispherical-ended Cylinder Bird Model Using Coupled Eulerian Lagrangian Method
This research studies the numerical simulation of the finite element method for bird strike using a hemispherical-ended cylinder bird model with varying length-to-diameter (L/D) ratio, namely 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; and 2.0. Birds are modelled with elastic, plastic, and hydrodynamic behaviour. The bird model uses the Coupled Eulerian-Lagrangian (CEL) method with impact speeds of 100 ms-1, 200 ms-1, and 300 ms-1. The simulation results show that the Hugoniot pressure value is around 15-36 times higher than stagnation pressure in L/D 1.4; 14-36 times in L/D 1.5; 13-30 times in L/D 1.6; 12-32 times in L/D 1.7; 12-26 times in L/D 1.8; 13-30 times in L/D 1.9; and 13-29 times in L/D 2.0. It was found that the highest Hugoniot and stagnation pressure were in L/D 1.5 and 1.8, while the lowest Hugoniot and stagnation pressure were in L/D 2.0 and 1.5, respectively. In addition, the error of the numerical results of the average Hugoniot and stagnation pressure value compared to the analytic was 2.9% and 7%, respectively.