D. Prabhakar, K. Srinivas, Ratna Spandana, D. Anusha, M. V. Srikanth, Y. Rama Krishna
{"title":"基于混合SSWOA算法的椭圆天线阵综合","authors":"D. Prabhakar, K. Srinivas, Ratna Spandana, D. Anusha, M. V. Srikanth, Y. Rama Krishna","doi":"10.13052/2023.aces.j.380503","DOIUrl":null,"url":null,"abstract":"In terms of research, the elliptical antenna arrays (EAA) synthesis is relatively novel. As it does not have to be circular in construction, this novel synthesis can maneuver the primary beam in the right direction, making it easier to realize. The amplitude and angular location of the ellipse, as well as the eccentricity of the ellipse, are all taken into account in the optimization process. The proposed hybrid algorithm is the SSWOA (Salp Swarm Whale Optimization Algorithm), which combines the Salp Swarm Optimization Algorithm (SSA) with the Whale Optimization Algorithm (WOA). The SSA algorithm serves as a guide, while the WOA algorithm serves as a helper in this method. We discover that optimization has a faster convergence time and high convergence accuracy when considering the benefits of SSA and WOA and applying them to the synthesis of antenna array layouts. If Griewank, Rosenbrock, Sphere, and Rastrigin test functions are used, it’s worth noting that the hybrid method outperforms both WOA and SSA.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"26 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm\",\"authors\":\"D. Prabhakar, K. Srinivas, Ratna Spandana, D. Anusha, M. V. Srikanth, Y. Rama Krishna\",\"doi\":\"10.13052/2023.aces.j.380503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In terms of research, the elliptical antenna arrays (EAA) synthesis is relatively novel. As it does not have to be circular in construction, this novel synthesis can maneuver the primary beam in the right direction, making it easier to realize. The amplitude and angular location of the ellipse, as well as the eccentricity of the ellipse, are all taken into account in the optimization process. The proposed hybrid algorithm is the SSWOA (Salp Swarm Whale Optimization Algorithm), which combines the Salp Swarm Optimization Algorithm (SSA) with the Whale Optimization Algorithm (WOA). The SSA algorithm serves as a guide, while the WOA algorithm serves as a helper in this method. We discover that optimization has a faster convergence time and high convergence accuracy when considering the benefits of SSA and WOA and applying them to the synthesis of antenna array layouts. If Griewank, Rosenbrock, Sphere, and Rastrigin test functions are used, it’s worth noting that the hybrid method outperforms both WOA and SSA.\",\"PeriodicalId\":8207,\"journal\":{\"name\":\"Applied Computational Electromagnetics Society Journal\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Electromagnetics Society Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.380503\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380503","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm
In terms of research, the elliptical antenna arrays (EAA) synthesis is relatively novel. As it does not have to be circular in construction, this novel synthesis can maneuver the primary beam in the right direction, making it easier to realize. The amplitude and angular location of the ellipse, as well as the eccentricity of the ellipse, are all taken into account in the optimization process. The proposed hybrid algorithm is the SSWOA (Salp Swarm Whale Optimization Algorithm), which combines the Salp Swarm Optimization Algorithm (SSA) with the Whale Optimization Algorithm (WOA). The SSA algorithm serves as a guide, while the WOA algorithm serves as a helper in this method. We discover that optimization has a faster convergence time and high convergence accuracy when considering the benefits of SSA and WOA and applying them to the synthesis of antenna array layouts. If Griewank, Rosenbrock, Sphere, and Rastrigin test functions are used, it’s worth noting that the hybrid method outperforms both WOA and SSA.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.