{"title":"尼日利亚阿南布拉州天坑附近土壤化学特征调查","authors":"Chibuogwu IU, Ugwu GZ","doi":"10.36348/sjce.2023.v07i09.001","DOIUrl":null,"url":null,"abstract":"In this comprehensive study, we delve into the chemical properties of soil in the proximity of sinkholes located in Anambra state of Nigeria. Three distinct sinkhole sites were selected for examination: Awka site 1 (6.2232°N and 7.0824°E), Awka site 2 (6.2220°N and 7.0819°E), and Agulu (6.0941°N and 7.0203°E). For a comprehensive analysis, 24 soil samples were meticulously collected and subjected to thorough analysis. These samples comprised of 15 specimens obtained from the immediate vicinity of the sinkholes, while 9 samples were procured from locations situated at least 2 kilometers away from the sinkhole sites. The study focused on investigating various parameters, namely pH levels, Organic Carbon (OC) content, Organic Matter (OM) content, Aluminum (Al) levels, Hydrogen (H) levels, Total Nitrogen (TN) content, Magnesium (Mg) levels, Potassium (K) levels, Sodium (Na) levels, Calcium (Ca) levels, Effective Cation Exchange Capacity (ECEC), Base Saturation, and soil texture. The obtained results revealed that the study areas predominantly exhibited a sandy composition with a notably low clay content. Furthermore, the analysis indicated low hydrogen values, while sodium levels were observed to be relatively high. Consequently, certain areas, particularly those situated farther away from the sinkhole site, exhibited a reduced amount of exchangeable bases and effective cation exchange capacity. This phenomenon potentially resulted in leaching and dispersion within the soil, leading to inadequate water infiltration and subsequent run-off. Notably, this process may have contributed to the formation of tunnel erosion, ultimately resulting in the emergence of sinkholes.","PeriodicalId":437137,"journal":{"name":"Saudi Journal of Civil Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation into the Chemical Characteristics of Soils near Sinkholes Situated in Anambra State, Nigeria\",\"authors\":\"Chibuogwu IU, Ugwu GZ\",\"doi\":\"10.36348/sjce.2023.v07i09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this comprehensive study, we delve into the chemical properties of soil in the proximity of sinkholes located in Anambra state of Nigeria. Three distinct sinkhole sites were selected for examination: Awka site 1 (6.2232°N and 7.0824°E), Awka site 2 (6.2220°N and 7.0819°E), and Agulu (6.0941°N and 7.0203°E). For a comprehensive analysis, 24 soil samples were meticulously collected and subjected to thorough analysis. These samples comprised of 15 specimens obtained from the immediate vicinity of the sinkholes, while 9 samples were procured from locations situated at least 2 kilometers away from the sinkhole sites. The study focused on investigating various parameters, namely pH levels, Organic Carbon (OC) content, Organic Matter (OM) content, Aluminum (Al) levels, Hydrogen (H) levels, Total Nitrogen (TN) content, Magnesium (Mg) levels, Potassium (K) levels, Sodium (Na) levels, Calcium (Ca) levels, Effective Cation Exchange Capacity (ECEC), Base Saturation, and soil texture. The obtained results revealed that the study areas predominantly exhibited a sandy composition with a notably low clay content. Furthermore, the analysis indicated low hydrogen values, while sodium levels were observed to be relatively high. Consequently, certain areas, particularly those situated farther away from the sinkhole site, exhibited a reduced amount of exchangeable bases and effective cation exchange capacity. This phenomenon potentially resulted in leaching and dispersion within the soil, leading to inadequate water infiltration and subsequent run-off. Notably, this process may have contributed to the formation of tunnel erosion, ultimately resulting in the emergence of sinkholes.\",\"PeriodicalId\":437137,\"journal\":{\"name\":\"Saudi Journal of Civil Engineering\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Saudi Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36348/sjce.2023.v07i09.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36348/sjce.2023.v07i09.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation into the Chemical Characteristics of Soils near Sinkholes Situated in Anambra State, Nigeria
In this comprehensive study, we delve into the chemical properties of soil in the proximity of sinkholes located in Anambra state of Nigeria. Three distinct sinkhole sites were selected for examination: Awka site 1 (6.2232°N and 7.0824°E), Awka site 2 (6.2220°N and 7.0819°E), and Agulu (6.0941°N and 7.0203°E). For a comprehensive analysis, 24 soil samples were meticulously collected and subjected to thorough analysis. These samples comprised of 15 specimens obtained from the immediate vicinity of the sinkholes, while 9 samples were procured from locations situated at least 2 kilometers away from the sinkhole sites. The study focused on investigating various parameters, namely pH levels, Organic Carbon (OC) content, Organic Matter (OM) content, Aluminum (Al) levels, Hydrogen (H) levels, Total Nitrogen (TN) content, Magnesium (Mg) levels, Potassium (K) levels, Sodium (Na) levels, Calcium (Ca) levels, Effective Cation Exchange Capacity (ECEC), Base Saturation, and soil texture. The obtained results revealed that the study areas predominantly exhibited a sandy composition with a notably low clay content. Furthermore, the analysis indicated low hydrogen values, while sodium levels were observed to be relatively high. Consequently, certain areas, particularly those situated farther away from the sinkhole site, exhibited a reduced amount of exchangeable bases and effective cation exchange capacity. This phenomenon potentially resulted in leaching and dispersion within the soil, leading to inadequate water infiltration and subsequent run-off. Notably, this process may have contributed to the formation of tunnel erosion, ultimately resulting in the emergence of sinkholes.