超图干涉下的因果效应估计

AI matters Pub Date : 2023-06-01 DOI:10.1145/3609468.3609472
Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, Jaime Teevan
{"title":"超图干涉下的因果效应估计","authors":"Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, Jaime Teevan","doi":"10.1145/3609468.3609472","DOIUrl":null,"url":null,"abstract":"Hypergraphs offer a powerful abstraction for representing multi-way group interactions, allowing hyperedges to connect any number of nodes. In contrast to prevailing approaches that focus on capturing statistical dependencies, our research explores hypergraphs from a causal perspective. Specifically, we tackle the problem of estimating individual treatment effects (ITE) on hypergraphs, aiming to determine the causal impact of interventions (e.g., wearing face covering) on outcomes (e.g., COVID-19 infection) for each individual node. Existing ITE estimation methods either assume no interference between individuals or consider interference only among connected individuals in regular graphs. However, such assumptions may not hold in real-world hypergraphs. Recognizing this, we propose a novel causality learning framework HyperSCI by modeling high-order interference on hyper-graphs. Through extensive experiments on real-world hypergraphs, we validate the effectiveness of HyperSCI and highlight the potential of causal inference in hypergraphs with complex group interactions. 1","PeriodicalId":91445,"journal":{"name":"AI matters","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Effect Estimation under Interference on Hypergraphs\",\"authors\":\"Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, Jaime Teevan\",\"doi\":\"10.1145/3609468.3609472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypergraphs offer a powerful abstraction for representing multi-way group interactions, allowing hyperedges to connect any number of nodes. In contrast to prevailing approaches that focus on capturing statistical dependencies, our research explores hypergraphs from a causal perspective. Specifically, we tackle the problem of estimating individual treatment effects (ITE) on hypergraphs, aiming to determine the causal impact of interventions (e.g., wearing face covering) on outcomes (e.g., COVID-19 infection) for each individual node. Existing ITE estimation methods either assume no interference between individuals or consider interference only among connected individuals in regular graphs. However, such assumptions may not hold in real-world hypergraphs. Recognizing this, we propose a novel causality learning framework HyperSCI by modeling high-order interference on hyper-graphs. Through extensive experiments on real-world hypergraphs, we validate the effectiveness of HyperSCI and highlight the potential of causal inference in hypergraphs with complex group interactions. 1\",\"PeriodicalId\":91445,\"journal\":{\"name\":\"AI matters\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI matters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609468.3609472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI matters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609468.3609472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超图为表示多路组交互提供了强大的抽象,允许超边缘连接任意数量的节点。与专注于捕获统计依赖性的流行方法相反,我们的研究从因果关系的角度探索超图。具体来说,我们解决了估计超图上的个体治疗效果(ITE)的问题,旨在确定每个节点的干预措施(例如,戴面罩)对结果(例如,COVID-19感染)的因果影响。现有的ITE估计方法要么假设个体之间没有干扰,要么只考虑正则图中连通个体之间的干扰。然而,这样的假设在现实世界的超图中可能不成立。认识到这一点,我们通过在超图上建模高阶干涉,提出了一个新的因果关系学习框架HyperSCI。通过对真实世界超图的大量实验,我们验证了HyperSCI的有效性,并强调了在具有复杂群体相互作用的超图中进行因果推理的潜力。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Effect Estimation under Interference on Hypergraphs
Hypergraphs offer a powerful abstraction for representing multi-way group interactions, allowing hyperedges to connect any number of nodes. In contrast to prevailing approaches that focus on capturing statistical dependencies, our research explores hypergraphs from a causal perspective. Specifically, we tackle the problem of estimating individual treatment effects (ITE) on hypergraphs, aiming to determine the causal impact of interventions (e.g., wearing face covering) on outcomes (e.g., COVID-19 infection) for each individual node. Existing ITE estimation methods either assume no interference between individuals or consider interference only among connected individuals in regular graphs. However, such assumptions may not hold in real-world hypergraphs. Recognizing this, we propose a novel causality learning framework HyperSCI by modeling high-order interference on hyper-graphs. Through extensive experiments on real-world hypergraphs, we validate the effectiveness of HyperSCI and highlight the potential of causal inference in hypergraphs with complex group interactions. 1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信