S. K. Suryasentana, H. J. Burd, B. W. Byrne, A. Shonberg
{"title":"吸力沉箱基础单轴加载的小应变非线性弹性Winkler模型","authors":"S. K. Suryasentana, H. J. Burd, B. W. Byrne, A. Shonberg","doi":"10.1680/jgele.23.00043","DOIUrl":null,"url":null,"abstract":"Soils exhibit non-linear stress-strain behaviour, even at relatively low strain levels. Existing Winkler models for suction caisson foundations cannot capture this small-strain, non-linear soil behaviour. To address this issue, this paper describes a new non-linear elastic Winkler model for the uniaxial loading of suction caissons. The soil reaction curves employed in the model are formulated as scaled versions of the soil response as observed in standard laboratory tests (e.g. triaxial or simple shear tests). The scaling relationships needed to map the observed soil element behaviour onto the soil reaction curves employed in the Winkler model are determined from an extensive numerical study employing 3D finite element analysis. Key features of the proposed Winkler model include: computational efficiency, wide applicability (it can be used for caisson design in clay, silt or sand) and design convenience (the required soil reaction curves can be determined straightforwardly from standard laboratory test results). The proposed model is suitable for small and intermediate caisson displacements (corresponding to fatigue and serviceability limit state conditions) but it is not applicable to ultimate limit state analyses.","PeriodicalId":48920,"journal":{"name":"Geotechnique Letters","volume":"70 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-strain, non-linear elastic Winkler model for uniaxial loading of suction caisson foundations\",\"authors\":\"S. K. Suryasentana, H. J. Burd, B. W. Byrne, A. Shonberg\",\"doi\":\"10.1680/jgele.23.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soils exhibit non-linear stress-strain behaviour, even at relatively low strain levels. Existing Winkler models for suction caisson foundations cannot capture this small-strain, non-linear soil behaviour. To address this issue, this paper describes a new non-linear elastic Winkler model for the uniaxial loading of suction caissons. The soil reaction curves employed in the model are formulated as scaled versions of the soil response as observed in standard laboratory tests (e.g. triaxial or simple shear tests). The scaling relationships needed to map the observed soil element behaviour onto the soil reaction curves employed in the Winkler model are determined from an extensive numerical study employing 3D finite element analysis. Key features of the proposed Winkler model include: computational efficiency, wide applicability (it can be used for caisson design in clay, silt or sand) and design convenience (the required soil reaction curves can be determined straightforwardly from standard laboratory test results). The proposed model is suitable for small and intermediate caisson displacements (corresponding to fatigue and serviceability limit state conditions) but it is not applicable to ultimate limit state analyses.\",\"PeriodicalId\":48920,\"journal\":{\"name\":\"Geotechnique Letters\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotechnique Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jgele.23.00043\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnique Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgele.23.00043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Small-strain, non-linear elastic Winkler model for uniaxial loading of suction caisson foundations
Soils exhibit non-linear stress-strain behaviour, even at relatively low strain levels. Existing Winkler models for suction caisson foundations cannot capture this small-strain, non-linear soil behaviour. To address this issue, this paper describes a new non-linear elastic Winkler model for the uniaxial loading of suction caissons. The soil reaction curves employed in the model are formulated as scaled versions of the soil response as observed in standard laboratory tests (e.g. triaxial or simple shear tests). The scaling relationships needed to map the observed soil element behaviour onto the soil reaction curves employed in the Winkler model are determined from an extensive numerical study employing 3D finite element analysis. Key features of the proposed Winkler model include: computational efficiency, wide applicability (it can be used for caisson design in clay, silt or sand) and design convenience (the required soil reaction curves can be determined straightforwardly from standard laboratory test results). The proposed model is suitable for small and intermediate caisson displacements (corresponding to fatigue and serviceability limit state conditions) but it is not applicable to ultimate limit state analyses.
期刊介绍:
Géotechnique Letters provides a vehicle for the rapid international dissemination of the latest and most innovative geotechnical research and practice. As an online journal, it is aimed at publishing short papers, intending to foster the quick exchange of the latest advances and most current ideas without the delays imposed by printed journals, whilst still maintaining rigorous peer reviewing standards.