考虑表面生长和烟尘反应的层流烟点烟尘模型

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Shahrooz Motaghian, Tarek Beji
{"title":"考虑表面生长和烟尘反应的层流烟点烟尘模型","authors":"Shahrooz Motaghian, Tarek Beji","doi":"10.1080/13647830.2023.2267526","DOIUrl":null,"url":null,"abstract":"AbstractThis paper proposes a Laminar Smoke Point (LSP)-based soot model, incorporating (as opposed to previously developed LSP-based models) soot surface growth. The latter is indeed believed to be dominant in soot formation. Simple reactions are also introduced to account for the conversion of fuel and oxygen in soot evolution mechanisms. The proposed and a reference LSP-based soot models have been implemented in OpenFOAM-v2006 and assessed against a wide variety of laminar flames (16 flames). A calibration-evaluation procedure is defined in which some flames are involved in the calibration of the constants, and the majority are utilised in an independent evaluation stage. The results show that the newly added features to the LSP-based soot modelling approach allow for a better agreement over a wider range of conditions, e.g. diluted and highly sooty flames. It is shown that although the proposed model is more accurate for buoyant flames, it performs significantly better than the reference model for non-buoyant flames.Keywords: CFDlaminar smoke pointsoot modellingOpenFOAMlaminar diffusion flames Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is funded by Ghent University (UGent), Belgium. Project number BOF/STA/201909/008.","PeriodicalId":50665,"journal":{"name":"Combustion Theory and Modelling","volume":"1 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A laminar smoke point-based soot model considering surface growth and soot reactions\",\"authors\":\"Shahrooz Motaghian, Tarek Beji\",\"doi\":\"10.1080/13647830.2023.2267526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThis paper proposes a Laminar Smoke Point (LSP)-based soot model, incorporating (as opposed to previously developed LSP-based models) soot surface growth. The latter is indeed believed to be dominant in soot formation. Simple reactions are also introduced to account for the conversion of fuel and oxygen in soot evolution mechanisms. The proposed and a reference LSP-based soot models have been implemented in OpenFOAM-v2006 and assessed against a wide variety of laminar flames (16 flames). A calibration-evaluation procedure is defined in which some flames are involved in the calibration of the constants, and the majority are utilised in an independent evaluation stage. The results show that the newly added features to the LSP-based soot modelling approach allow for a better agreement over a wider range of conditions, e.g. diluted and highly sooty flames. It is shown that although the proposed model is more accurate for buoyant flames, it performs significantly better than the reference model for non-buoyant flames.Keywords: CFDlaminar smoke pointsoot modellingOpenFOAMlaminar diffusion flames Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is funded by Ghent University (UGent), Belgium. Project number BOF/STA/201909/008.\",\"PeriodicalId\":50665,\"journal\":{\"name\":\"Combustion Theory and Modelling\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion Theory and Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13647830.2023.2267526\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion Theory and Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13647830.2023.2267526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种基于层流烟点(LSP)的烟尘模型,该模型结合了烟尘表面的生长(与先前开发的基于LSP的模型相反)。后者确实被认为在烟灰形成中占主导地位。简单的反应也被引入来解释烟灰演化机制中燃料和氧气的转化。提出的和参考的基于lsp的烟尘模型已经在OpenFOAM-v2006中实现,并针对各种层流火焰(16种火焰)进行了评估。定义了一个校准-评估程序,其中一些火焰涉及常数的校准,而大多数火焰用于独立的评估阶段。结果表明,基于lsp的煤烟建模方法的新添加的特征允许在更广泛的条件下更好地达成协议,例如稀释和高煤烟火焰。结果表明,该模型对浮力火焰的计算精度较高,但对非浮力火焰的计算精度明显优于参考模型。关键词:cfm层流烟点烟根模型openfoam层流扩散火焰披露声明作者未报告潜在利益冲突。本研究由比利时根特大学(UGent)资助。项目编号BOF/STA/201909/008。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A laminar smoke point-based soot model considering surface growth and soot reactions
AbstractThis paper proposes a Laminar Smoke Point (LSP)-based soot model, incorporating (as opposed to previously developed LSP-based models) soot surface growth. The latter is indeed believed to be dominant in soot formation. Simple reactions are also introduced to account for the conversion of fuel and oxygen in soot evolution mechanisms. The proposed and a reference LSP-based soot models have been implemented in OpenFOAM-v2006 and assessed against a wide variety of laminar flames (16 flames). A calibration-evaluation procedure is defined in which some flames are involved in the calibration of the constants, and the majority are utilised in an independent evaluation stage. The results show that the newly added features to the LSP-based soot modelling approach allow for a better agreement over a wider range of conditions, e.g. diluted and highly sooty flames. It is shown that although the proposed model is more accurate for buoyant flames, it performs significantly better than the reference model for non-buoyant flames.Keywords: CFDlaminar smoke pointsoot modellingOpenFOAMlaminar diffusion flames Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work is funded by Ghent University (UGent), Belgium. Project number BOF/STA/201909/008.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion Theory and Modelling
Combustion Theory and Modelling 工程技术-工程:化工
CiteScore
3.00
自引率
7.70%
发文量
38
审稿时长
6 months
期刊介绍: Combustion Theory and Modelling is a leading international journal devoted to the application of mathematical modelling, numerical simulation and experimental techniques to the study of combustion. Articles can cover a wide range of topics, such as: premixed laminar flames, laminar diffusion flames, turbulent combustion, fires, chemical kinetics, pollutant formation, microgravity, materials synthesis, chemical vapour deposition, catalysis, droplet and spray combustion, detonation dynamics, thermal explosions, ignition, energetic materials and propellants, burners and engine combustion. A diverse spectrum of mathematical methods may also be used, including large scale numerical simulation, hybrid computational schemes, front tracking, adaptive mesh refinement, optimized parallel computation, asymptotic methods and singular perturbation techniques, bifurcation theory, optimization methods, dynamical systems theory, cellular automata and discrete methods and probabilistic and statistical methods. Experimental studies that employ intrusive or nonintrusive diagnostics and are published in the Journal should be closely related to theoretical issues, by highlighting fundamental theoretical questions or by providing a sound basis for comparison with theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信