H s (0,T), s<1/2的二元最优控制

Pub Date : 2023-11-10 DOI:10.5802/crmath.507
Paul Manns, Thomas M. Surowiec
{"title":"H s (0,T), s&lt;1/2的二元最优控制","authors":"Paul Manns, Thomas M. Surowiec","doi":"10.5802/crmath.507","DOIUrl":null,"url":null,"abstract":"The function space H s (0,T), s<1/2, allows for functions with jump discontinuities and is thus attractive for treating optimal control problems with discrete-valued control functions. We show that while arbitrary chattering controls are impossible, there exist feasible controls in H s (0,T) that have countably jump discontinuities with jump height one in each of countably many pairwise disjoint intervals. However, under mild assumptions, we show that certain types of jump discontinuities cannot be optimal. The derivation of meaningful optimality conditions via a direct variational argument using simple feasible perturbations remains a major challenge; as illustrated by an example.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Binary Optimal Control in H s (0,T), s&lt;1/2\",\"authors\":\"Paul Manns, Thomas M. Surowiec\",\"doi\":\"10.5802/crmath.507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The function space H s (0,T), s<1/2, allows for functions with jump discontinuities and is thus attractive for treating optimal control problems with discrete-valued control functions. We show that while arbitrary chattering controls are impossible, there exist feasible controls in H s (0,T) that have countably jump discontinuities with jump height one in each of countably many pairwise disjoint intervals. However, under mild assumptions, we show that certain types of jump discontinuities cannot be optimal. The derivation of meaningful optimality conditions via a direct variational argument using simple feasible perturbations remains a major challenge; as illustrated by an example.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

函数空间H s (0,T), s<1/2,允许具有跳跃不连续的函数,因此对于处理具有离散值控制函数的最优控制问题具有吸引力。我们证明了任意抖振控制是不可能的,但在H (0,T)中存在可行的控制,该控制具有可计数的跳跃不连续,在可计数的多个两两不相交区间中的每个区间中跳跃高度为1。然而,在温和的假设下,我们证明某些类型的跳跃不连续不能是最优的。利用简单可行扰动通过直接变分参数推导有意义的最优性条件仍然是一个主要挑战;用一个例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Binary Optimal Control in H s (0,T), s<1/2
The function space H s (0,T), s<1/2, allows for functions with jump discontinuities and is thus attractive for treating optimal control problems with discrete-valued control functions. We show that while arbitrary chattering controls are impossible, there exist feasible controls in H s (0,T) that have countably jump discontinuities with jump height one in each of countably many pairwise disjoint intervals. However, under mild assumptions, we show that certain types of jump discontinuities cannot be optimal. The derivation of meaningful optimality conditions via a direct variational argument using simple feasible perturbations remains a major challenge; as illustrated by an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信