José Eneas Schramm Júnior, Gabriela S. Oliveira, Tamires B. Santos, Gilberto Marcos de M. Santos
{"title":"蚂蚁睡觉,植物不睡觉:物种活动的变化影响相互作用网络的拓扑结构","authors":"José Eneas Schramm Júnior, Gabriela S. Oliveira, Tamires B. Santos, Gilberto Marcos de M. Santos","doi":"10.13102/sociobiology.v70i4.9283","DOIUrl":null,"url":null,"abstract":"The emergence of graph theory allowed using the complex network approach to aggregate detailed information about interactions between species. Although the use of the complex network approach has improved the understanding about community structuring, few aspects such as the temporal variation in the species’ activity pattern in the networks’ topology were explored so far. The current study used the ecological network approach to investigate ants interacting in the extrafloral nectary (EFN) of plants in order to test the hypothesis that the temporal variation in the foraging behavior of these animals affects the networks’ topology. In order to assess the temporal effect on the interaction networks, 24-hour collections divided in two 12-hour shifts (day and night) were performed in 20 plots, thus totaling 288 collection hours over 6 months. The ant-plant interaction networks presented similarity among the topological metrics assessed throughout the day. Different ant species presented distinct foraging times. Thus, two modules referring to the day and night shifts emerged from the network and presented specific species at each foraging shift. On the other hand, the plants kept on providing the resource (active EFNs) throughout the day. The results found in the current study have shown that ecological networks keep their structures constant; however, the ecological processes ruling these networks can better respond to the effects caused, for example, by the temporal variation in species’ activity. Therefore, it is worth always taking into consideration the importance of ecological processes at the time to analyze interactions in the nature.","PeriodicalId":21971,"journal":{"name":"Sociobiology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ants Sleep, Plants do not: The Variation in Species’ Activity Influences the Topology of Interaction Networks\",\"authors\":\"José Eneas Schramm Júnior, Gabriela S. Oliveira, Tamires B. Santos, Gilberto Marcos de M. Santos\",\"doi\":\"10.13102/sociobiology.v70i4.9283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of graph theory allowed using the complex network approach to aggregate detailed information about interactions between species. Although the use of the complex network approach has improved the understanding about community structuring, few aspects such as the temporal variation in the species’ activity pattern in the networks’ topology were explored so far. The current study used the ecological network approach to investigate ants interacting in the extrafloral nectary (EFN) of plants in order to test the hypothesis that the temporal variation in the foraging behavior of these animals affects the networks’ topology. In order to assess the temporal effect on the interaction networks, 24-hour collections divided in two 12-hour shifts (day and night) were performed in 20 plots, thus totaling 288 collection hours over 6 months. The ant-plant interaction networks presented similarity among the topological metrics assessed throughout the day. Different ant species presented distinct foraging times. Thus, two modules referring to the day and night shifts emerged from the network and presented specific species at each foraging shift. On the other hand, the plants kept on providing the resource (active EFNs) throughout the day. The results found in the current study have shown that ecological networks keep their structures constant; however, the ecological processes ruling these networks can better respond to the effects caused, for example, by the temporal variation in species’ activity. Therefore, it is worth always taking into consideration the importance of ecological processes at the time to analyze interactions in the nature.\",\"PeriodicalId\":21971,\"journal\":{\"name\":\"Sociobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13102/sociobiology.v70i4.9283\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13102/sociobiology.v70i4.9283","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Ants Sleep, Plants do not: The Variation in Species’ Activity Influences the Topology of Interaction Networks
The emergence of graph theory allowed using the complex network approach to aggregate detailed information about interactions between species. Although the use of the complex network approach has improved the understanding about community structuring, few aspects such as the temporal variation in the species’ activity pattern in the networks’ topology were explored so far. The current study used the ecological network approach to investigate ants interacting in the extrafloral nectary (EFN) of plants in order to test the hypothesis that the temporal variation in the foraging behavior of these animals affects the networks’ topology. In order to assess the temporal effect on the interaction networks, 24-hour collections divided in two 12-hour shifts (day and night) were performed in 20 plots, thus totaling 288 collection hours over 6 months. The ant-plant interaction networks presented similarity among the topological metrics assessed throughout the day. Different ant species presented distinct foraging times. Thus, two modules referring to the day and night shifts emerged from the network and presented specific species at each foraging shift. On the other hand, the plants kept on providing the resource (active EFNs) throughout the day. The results found in the current study have shown that ecological networks keep their structures constant; however, the ecological processes ruling these networks can better respond to the effects caused, for example, by the temporal variation in species’ activity. Therefore, it is worth always taking into consideration the importance of ecological processes at the time to analyze interactions in the nature.
期刊介绍:
SOCIOBIOLOGY publishes high quality articles that significantly contribute to the knowledge of Entomology, with emphasis on social insects. Articles previously submitted to other journals are not accepted. SOCIOBIOLOGY publishes original research papers and invited review articles on all aspects related to the biology, evolution and systematics of social and pre-social insects (Ants, Termites, Bees and Wasps). The journal is currently expanding its scope to incorporate the publication of articles dealing with other arthropods that exhibit sociality. Articles may cover a range of subjects such as ecology, ethology, morphology, population genetics, physiology, toxicology, reproduction, sociobiology, caste differentiation as well as economic impact and pest management.