自适应高斯搜索:一种新颖的非线性最小化技术[总统奖程序]

Koichi OSHIO
{"title":"自适应高斯搜索:一种新颖的非线性最小化技术[总统奖程序]","authors":"Koichi OSHIO","doi":"10.2463/jjmrm.2022-1775","DOIUrl":null,"url":null,"abstract":"A novel minimization technique was developed. The proposed method is based on a Gaussian random search in the parameter space and it can handle a wide range of problems, including bi-exponential curve fitting, in a reasonable time. It uses only function values, and does not require gradients.","PeriodicalId":471579,"journal":{"name":"Nihon Jiki Kyōmei Igakkai zasshi","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Gaussian Search : A Novel Non-linear Minimization Technique [Presidential Award Proceedings]\",\"authors\":\"Koichi OSHIO\",\"doi\":\"10.2463/jjmrm.2022-1775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel minimization technique was developed. The proposed method is based on a Gaussian random search in the parameter space and it can handle a wide range of problems, including bi-exponential curve fitting, in a reasonable time. It uses only function values, and does not require gradients.\",\"PeriodicalId\":471579,\"journal\":{\"name\":\"Nihon Jiki Kyōmei Igakkai zasshi\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nihon Jiki Kyōmei Igakkai zasshi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2463/jjmrm.2022-1775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon Jiki Kyōmei Igakkai zasshi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2463/jjmrm.2022-1775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的最小化技术。该方法基于参数空间的高斯随机搜索,可以在合理的时间内处理包括双指数曲线拟合在内的各种问题。它只使用函数值,不需要梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Gaussian Search : A Novel Non-linear Minimization Technique [Presidential Award Proceedings]
A novel minimization technique was developed. The proposed method is based on a Gaussian random search in the parameter space and it can handle a wide range of problems, including bi-exponential curve fitting, in a reasonable time. It uses only function values, and does not require gradients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信