有界树性图的近最优分布支配集

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Michal Dory, Mohsen Ghaffari, Saeed Ilchi
{"title":"有界树性图的近最优分布支配集","authors":"Michal Dory, Mohsen Ghaffari, Saeed Ilchi","doi":"10.1007/s00446-023-00447-z","DOIUrl":null,"url":null,"abstract":"Abstract We describe a simple deterministic $$O( \\varepsilon ^{-1} \\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>ε</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> round distributed algorithm for $$(2\\alpha +1)(1 + \\varepsilon )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation of minimum weighted dominating set on graphs with arboricity at most $$\\alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> . Here $$\\Delta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Δ</mml:mi> </mml:math> denotes the maximum degree. We also show a lower bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated KMW lower bound on distributed vertex cover approximation (Kuhn et al. in JACM 63:116, 2016). Our algorithm improves on all the previous results (that work only for unweighted graphs) including a randomized $$O(\\alpha ^2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Lenzen et al. in International symposium on distributed computing, Springer, 2010), a deterministic $$O(\\alpha \\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Lenzen et al. in international symposium on distributed computing, Springer, 2010), a deterministic $$O(\\alpha )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\log ^2 \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mo>log</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (implicit in Bansal et al. in Inform Process Lett 122:21–24, 2017; Proceeding 17th symposium on discrete algorithms (SODA), 2006), and a randomized $$O(\\alpha )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\alpha \\log n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Morgan et al. in 35th International symposiumon distributed computing, 2021). We also provide a randomized $$O(\\alpha \\log \\Delta )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> round distributed algorithm that sharpens the approximation factor to $$\\alpha (1+o(1))$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . If each node is restricted to do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve $$\\alpha - 1 - \\varepsilon $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> approximation (Bansal et al. in Inform Process Lett 122:21-24, 2017).","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-optimal distributed dominating set in bounded arboricity graphs\",\"authors\":\"Michal Dory, Mohsen Ghaffari, Saeed Ilchi\",\"doi\":\"10.1007/s00446-023-00447-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe a simple deterministic $$O( \\\\varepsilon ^{-1} \\\\log \\\\Delta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>ε</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> round distributed algorithm for $$(2\\\\alpha +1)(1 + \\\\varepsilon )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>ε</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation of minimum weighted dominating set on graphs with arboricity at most $$\\\\alpha $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>α</mml:mi> </mml:math> . Here $$\\\\Delta $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Δ</mml:mi> </mml:math> denotes the maximum degree. We also show a lower bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated KMW lower bound on distributed vertex cover approximation (Kuhn et al. in JACM 63:116, 2016). Our algorithm improves on all the previous results (that work only for unweighted graphs) including a randomized $$O(\\\\alpha ^2)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Lenzen et al. in International symposium on distributed computing, Springer, 2010), a deterministic $$O(\\\\alpha \\\\log \\\\Delta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\\\log \\\\Delta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Lenzen et al. in international symposium on distributed computing, Springer, 2010), a deterministic $$O(\\\\alpha )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\\\log ^2 \\\\Delta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:msup> <mml:mo>log</mml:mo> <mml:mn>2</mml:mn> </mml:msup> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (implicit in Bansal et al. in Inform Process Lett 122:21–24, 2017; Proceeding 17th symposium on discrete algorithms (SODA), 2006), and a randomized $$O(\\\\alpha )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> approximation in $$O(\\\\alpha \\\\log n)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> rounds (Morgan et al. in 35th International symposiumon distributed computing, 2021). We also provide a randomized $$O(\\\\alpha \\\\log \\\\Delta )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>log</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> round distributed algorithm that sharpens the approximation factor to $$\\\\alpha (1+o(1))$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>o</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . If each node is restricted to do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve $$\\\\alpha - 1 - \\\\varepsilon $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>ε</mml:mi> </mml:mrow> </mml:math> approximation (Bansal et al. in Inform Process Lett 122:21-24, 2017).\",\"PeriodicalId\":50569,\"journal\":{\"name\":\"Distributed Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00446-023-00447-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00446-023-00447-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要描述了一种简单的确定性$$O( \varepsilon ^{-1} \log \Delta )$$ O (ε - 1 log Δ)轮分布算法,用于求解最大限为$$\alpha $$ α的图上的最小加权支配集的$$(2\alpha +1)(1 + \varepsilon )$$ (2 α + 1) (1 + ε)逼近。其中$$\Delta $$ Δ表示最大度。我们还展示了一个下界,通过减少分布式顶点覆盖近似上著名的KMW下界(Kuhn等人在JACM 63:116, 2016),证明即使在未加权的情况下,这种轮复杂度也几乎是最优的。我们的算法改进了之前的所有结果(仅适用于未加权的图),包括$$O(\log n)$$ O (log n)轮的随机$$O(\alpha ^2)$$ O (α 2)近似(Lenzen等人在分布式计算国际研讨会上,Springer, 2010), $$O(\log \Delta )$$ O (log Δ)轮的确定性$$O(\alpha \log \Delta )$$ O (α log Δ)近似(Lenzen等人在分布式计算国际研讨会上,Springer, 2010),在$$O(\log ^2 \Delta )$$ O (log 2 Δ)轮中的确定性$$O(\alpha )$$ O (α)近似(隐含在Bansal等人的Inform Process Lett 122:21 - 24,2017中);进行第17届离散算法研讨会(SODA), 2006年),以及$$O(\alpha \log n)$$ O (α log n)轮的随机$$O(\alpha )$$ O (α)近似(Morgan等人在第35届国际分布式计算研讨会上,2021年)。我们还提供了一个随机的$$O(\alpha \log \Delta )$$ O (α log Δ)轮分布算法,该算法将近似因子提高到$$\alpha (1+o(1))$$ α (1 + O(1))。如果每个节点被限制进行多项式时间计算,我们的近似因子在一阶上是紧密的,因为它是NP-hard实现$$\alpha - 1 - \varepsilon $$ α - 1- ε近似(Bansal et al. in Inform Process Lett 122:21- 24,2017)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Near-optimal distributed dominating set in bounded arboricity graphs

Near-optimal distributed dominating set in bounded arboricity graphs
Abstract We describe a simple deterministic $$O( \varepsilon ^{-1} \log \Delta )$$ O ( ε - 1 log Δ ) round distributed algorithm for $$(2\alpha +1)(1 + \varepsilon )$$ ( 2 α + 1 ) ( 1 + ε ) approximation of minimum weighted dominating set on graphs with arboricity at most $$\alpha $$ α . Here $$\Delta $$ Δ denotes the maximum degree. We also show a lower bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated KMW lower bound on distributed vertex cover approximation (Kuhn et al. in JACM 63:116, 2016). Our algorithm improves on all the previous results (that work only for unweighted graphs) including a randomized $$O(\alpha ^2)$$ O ( α 2 ) approximation in $$O(\log n)$$ O ( log n ) rounds (Lenzen et al. in International symposium on distributed computing, Springer, 2010), a deterministic $$O(\alpha \log \Delta )$$ O ( α log Δ ) approximation in $$O(\log \Delta )$$ O ( log Δ ) rounds (Lenzen et al. in international symposium on distributed computing, Springer, 2010), a deterministic $$O(\alpha )$$ O ( α ) approximation in $$O(\log ^2 \Delta )$$ O ( log 2 Δ ) rounds (implicit in Bansal et al. in Inform Process Lett 122:21–24, 2017; Proceeding 17th symposium on discrete algorithms (SODA), 2006), and a randomized $$O(\alpha )$$ O ( α ) approximation in $$O(\alpha \log n)$$ O ( α log n ) rounds (Morgan et al. in 35th International symposiumon distributed computing, 2021). We also provide a randomized $$O(\alpha \log \Delta )$$ O ( α log Δ ) round distributed algorithm that sharpens the approximation factor to $$\alpha (1+o(1))$$ α ( 1 + o ( 1 ) ) . If each node is restricted to do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve $$\alpha - 1 - \varepsilon $$ α - 1 - ε approximation (Bansal et al. in Inform Process Lett 122:21-24, 2017).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Distributed Computing
Distributed Computing 工程技术-计算机:理论方法
CiteScore
3.20
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems. Topics covered by the journal include but are not limited to: design and analysis of distributed algorithms; multiprocessor and multi-core architectures and algorithms; synchronization protocols and concurrent programming; distributed operating systems and middleware; fault-tolerance, reliability and availability; architectures and protocols for communication networks and peer-to-peer systems; security in distributed computing, cryptographic protocols; mobile, sensor, and ad hoc networks; internet applications; concurrency theory; specification, semantics, verification, and testing of distributed systems. In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信