早、晚熟珍珠谷子品种与播窗配种可提高撒哈拉以南半干旱地区农业生态系统对气候变化的适应性

IF 3 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Climate Pub Date : 2023-11-10 DOI:10.3390/cli11110227
Simon Kamwele Awala, Kudakwashe Hove, Johanna Shekupe Valombola, Helena Nalitende Nafuka, Evans Kamwi Simasiku, Barthlomew Chataika, Lydia Ndinelao Horn, Simon Angombe, Levi S. M. Akundabweni, Osmund D. Mwandemele
{"title":"早、晚熟珍珠谷子品种与播窗配种可提高撒哈拉以南半干旱地区农业生态系统对气候变化的适应性","authors":"Simon Kamwele Awala, Kudakwashe Hove, Johanna Shekupe Valombola, Helena Nalitende Nafuka, Evans Kamwi Simasiku, Barthlomew Chataika, Lydia Ndinelao Horn, Simon Angombe, Levi S. M. Akundabweni, Osmund D. Mwandemele","doi":"10.3390/cli11110227","DOIUrl":null,"url":null,"abstract":"In semi-arid regions, climate change has affected crop growing season length and sowing time, potentially causing low yield of the rainfed staple crop pearl millet (Pennisetum glaucum L.) and food insecurity among smallholder farmers. In this study, we used 1994–2023 rainfall data from Namibia’s semi-arid North-Central Region (NCR), receiving November–April summer rainfall, to analyze rainfall patterns and trends and their implications on the growing season to propose climate adaptation options for the region. The results revealed high annual and monthly rainfall variabilities, with nonsignificant negative trends for November–February rainfalls, implying a shortening growing season. Furthermore, we determined the effects of sowing date on grain yields of the early-maturing Okashana-2 and local landrace Kantana pearl millet varieties and the optimal sowing window for the region, using data from a two-year split-plot field experiment conducted at the University of Namibia—Ogongo Campus, NCR, during the rainy season. Cubic polynomial regression models were applied to grain-yield data sets to predict grain production for any sowing date between January and March. Both varieties produced the highest grain yields under January sowings, with Kantana exhibiting a higher yield potential than Okashana-2. Kantana, sown by 14 January, had a yield advantage of up to 36% over Okashana-2, but its yield gradually reduced with delays in sowing. Okashana-2 exhibited higher yield stability across January sowings, surpassing Kantana’s yields by up to 9.4% following the 14 January sowing. We determined the pearl millet optimal sowing window for the NCR to be from 1–7 and 1–21 January for Kantana and Okashana-2, respectively. These results suggest that co-cultivation of early and late pearl millet varieties and growing early-maturing varieties under delayed seasons could stabilize grain production in northern Namibia and enhance farmers’ climate adaptation. Policymakers for semi-arid agricultural regions could utilize this information to adjust local seed systems and extension strategies.","PeriodicalId":37615,"journal":{"name":"Climate","volume":"118 13","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems\",\"authors\":\"Simon Kamwele Awala, Kudakwashe Hove, Johanna Shekupe Valombola, Helena Nalitende Nafuka, Evans Kamwi Simasiku, Barthlomew Chataika, Lydia Ndinelao Horn, Simon Angombe, Levi S. M. Akundabweni, Osmund D. Mwandemele\",\"doi\":\"10.3390/cli11110227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In semi-arid regions, climate change has affected crop growing season length and sowing time, potentially causing low yield of the rainfed staple crop pearl millet (Pennisetum glaucum L.) and food insecurity among smallholder farmers. In this study, we used 1994–2023 rainfall data from Namibia’s semi-arid North-Central Region (NCR), receiving November–April summer rainfall, to analyze rainfall patterns and trends and their implications on the growing season to propose climate adaptation options for the region. The results revealed high annual and monthly rainfall variabilities, with nonsignificant negative trends for November–February rainfalls, implying a shortening growing season. Furthermore, we determined the effects of sowing date on grain yields of the early-maturing Okashana-2 and local landrace Kantana pearl millet varieties and the optimal sowing window for the region, using data from a two-year split-plot field experiment conducted at the University of Namibia—Ogongo Campus, NCR, during the rainy season. Cubic polynomial regression models were applied to grain-yield data sets to predict grain production for any sowing date between January and March. Both varieties produced the highest grain yields under January sowings, with Kantana exhibiting a higher yield potential than Okashana-2. Kantana, sown by 14 January, had a yield advantage of up to 36% over Okashana-2, but its yield gradually reduced with delays in sowing. Okashana-2 exhibited higher yield stability across January sowings, surpassing Kantana’s yields by up to 9.4% following the 14 January sowing. We determined the pearl millet optimal sowing window for the NCR to be from 1–7 and 1–21 January for Kantana and Okashana-2, respectively. These results suggest that co-cultivation of early and late pearl millet varieties and growing early-maturing varieties under delayed seasons could stabilize grain production in northern Namibia and enhance farmers’ climate adaptation. Policymakers for semi-arid agricultural regions could utilize this information to adjust local seed systems and extension strategies.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":\"118 13\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli11110227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11110227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在半干旱地区,气候变化影响了作物的生长季节长度和播种时间,可能造成雨养主食珍珠粟(Pennisetum glaucum L.)的低产量和小农的粮食不安全。在这项研究中,我们使用1994-2023年纳米比亚半干旱中北部地区(NCR)的降雨数据,接收11月至4月的夏季降雨,分析降雨模式和趋势及其对生长季节的影响,为该地区提出气候适应方案。结果显示,年降水量和月降水量变化较大,11月至2月降水量呈不显著的负变化趋势,表明生长期缩短。此外,我们利用在纳米比亚大学奥贡戈校区进行的为期两年的雨季分块田间试验数据,确定了播种日期对早熟Okashana-2和地方地方品种Kantana珍珠谷子产量的影响,以及该地区的最佳播种窗口。将三次多项式回归模型应用于粮食产量数据集,预测1 - 3月任意播种日期的粮食产量。这两个品种在1月播种时的产量最高,其中kantanana表现出比okasasana -2更高的产量潜力。1月14日播种的Kantana比Okashana-2的产量优势高达36%,但随着播种的延迟,其产量逐渐降低。okasana -2在1月播种期间表现出更高的产量稳定性,在1月14日播种后,其产量超过kantanana的产量高达9.4%。我们确定了珍珠粟NCR的最佳播期分别为1月1-7日和1月1-21日,分别为Kantana和Okashana-2。上述结果表明,在纳米比亚北部地区,早、晚珍珠谷子品种的混作和晚熟品种的种植可以稳定粮食生产,提高农民的气候适应能力。半干旱农业区的决策者可以利用这些信息调整当地的种子系统和推广策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Cultivation and Matching of Early- and Late-Maturing Pearl Millet Varieties to Sowing Windows Can Enhance Climate-Change Adaptation in Semi-Arid Sub-Saharan Agroecosystems
In semi-arid regions, climate change has affected crop growing season length and sowing time, potentially causing low yield of the rainfed staple crop pearl millet (Pennisetum glaucum L.) and food insecurity among smallholder farmers. In this study, we used 1994–2023 rainfall data from Namibia’s semi-arid North-Central Region (NCR), receiving November–April summer rainfall, to analyze rainfall patterns and trends and their implications on the growing season to propose climate adaptation options for the region. The results revealed high annual and monthly rainfall variabilities, with nonsignificant negative trends for November–February rainfalls, implying a shortening growing season. Furthermore, we determined the effects of sowing date on grain yields of the early-maturing Okashana-2 and local landrace Kantana pearl millet varieties and the optimal sowing window for the region, using data from a two-year split-plot field experiment conducted at the University of Namibia—Ogongo Campus, NCR, during the rainy season. Cubic polynomial regression models were applied to grain-yield data sets to predict grain production for any sowing date between January and March. Both varieties produced the highest grain yields under January sowings, with Kantana exhibiting a higher yield potential than Okashana-2. Kantana, sown by 14 January, had a yield advantage of up to 36% over Okashana-2, but its yield gradually reduced with delays in sowing. Okashana-2 exhibited higher yield stability across January sowings, surpassing Kantana’s yields by up to 9.4% following the 14 January sowing. We determined the pearl millet optimal sowing window for the NCR to be from 1–7 and 1–21 January for Kantana and Okashana-2, respectively. These results suggest that co-cultivation of early and late pearl millet varieties and growing early-maturing varieties under delayed seasons could stabilize grain production in northern Namibia and enhance farmers’ climate adaptation. Policymakers for semi-arid agricultural regions could utilize this information to adjust local seed systems and extension strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Climate
Climate Earth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍: Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信