{"title":"谁是最好的侦探?大型语言模型与传统机器学习在检测四年级数学不连贯答案中的对比","authors":"Felipe Urrutia, Roberto Araya","doi":"10.1177/07356331231191174","DOIUrl":null,"url":null,"abstract":"Written answers to open-ended questions can have a higher long-term effect on learning than multiple-choice questions. However, it is critical that teachers immediately review the answers, and ask to redo those that are incoherent. This can be a difficult task and can be time-consuming for teachers. A possible solution is to automate the detection of incoherent answers. One option is to automate the review with Large Language Models (LLM). They have a powerful discursive ability that can be used to explain decisions. In this paper, we analyze the responses of fourth graders in mathematics using three LLMs: GPT-3, BLOOM, and YOU. We used them with zero, one, two, three and four shots. We compared their performance with the results of various classifiers trained with Machine Learning (ML). We found that LLMs perform worse than MLs in detecting incoherent answers. The difficulty seems to reside in recursive questions that contain both questions and answers, and in responses from students with typical fourth-grader misspellings. Upon closer examination, we have found that the ChatGPT model faces the same challenges.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"114 19","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Who's the Best Detective? Large Language Models vs. Traditional Machine Learning in Detecting Incoherent Fourth Grade Math Answers\",\"authors\":\"Felipe Urrutia, Roberto Araya\",\"doi\":\"10.1177/07356331231191174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Written answers to open-ended questions can have a higher long-term effect on learning than multiple-choice questions. However, it is critical that teachers immediately review the answers, and ask to redo those that are incoherent. This can be a difficult task and can be time-consuming for teachers. A possible solution is to automate the detection of incoherent answers. One option is to automate the review with Large Language Models (LLM). They have a powerful discursive ability that can be used to explain decisions. In this paper, we analyze the responses of fourth graders in mathematics using three LLMs: GPT-3, BLOOM, and YOU. We used them with zero, one, two, three and four shots. We compared their performance with the results of various classifiers trained with Machine Learning (ML). We found that LLMs perform worse than MLs in detecting incoherent answers. The difficulty seems to reside in recursive questions that contain both questions and answers, and in responses from students with typical fourth-grader misspellings. Upon closer examination, we have found that the ChatGPT model faces the same challenges.\",\"PeriodicalId\":47865,\"journal\":{\"name\":\"Journal of Educational Computing Research\",\"volume\":\"114 19\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/07356331231191174\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07356331231191174","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Who's the Best Detective? Large Language Models vs. Traditional Machine Learning in Detecting Incoherent Fourth Grade Math Answers
Written answers to open-ended questions can have a higher long-term effect on learning than multiple-choice questions. However, it is critical that teachers immediately review the answers, and ask to redo those that are incoherent. This can be a difficult task and can be time-consuming for teachers. A possible solution is to automate the detection of incoherent answers. One option is to automate the review with Large Language Models (LLM). They have a powerful discursive ability that can be used to explain decisions. In this paper, we analyze the responses of fourth graders in mathematics using three LLMs: GPT-3, BLOOM, and YOU. We used them with zero, one, two, three and four shots. We compared their performance with the results of various classifiers trained with Machine Learning (ML). We found that LLMs perform worse than MLs in detecting incoherent answers. The difficulty seems to reside in recursive questions that contain both questions and answers, and in responses from students with typical fourth-grader misspellings. Upon closer examination, we have found that the ChatGPT model faces the same challenges.
期刊介绍:
The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.