稳态表面核磁共振资料中小穗的观察

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Geophysics Pub Date : 2023-11-10 DOI:10.1190/geo2023-0145.1
Denys Grombacher, Matthew Peter Griffiths, Mathias Østbjerg Vang, Mason Andrew Kass, Jakob Juul Larsen
{"title":"稳态表面核磁共振资料中小穗的观察","authors":"Denys Grombacher, Matthew Peter Griffiths, Mathias Østbjerg Vang, Mason Andrew Kass, Jakob Juul Larsen","doi":"10.1190/geo2023-0145.1","DOIUrl":null,"url":null,"abstract":"Spikelets in NMR data occur at predictable frequencies depending only on the repetition time of the excitation sequence. While spikelets are well documented in other NMR fields, we report their presence in steady-state surface NMR data for the first time. These observations are accompanied by analytical developments to understand and predict their behaviour, which follow directly from existing steady-state surface NMR modelling. We show that spikelets represent copies of the surface NMR signal occurring at multiple locations in the frequency domain, including locations that are distinct from the Larmor frequency. These features are shown to be detectable without requiring additional effort in the field, and are shown to be readily processed and modeled with only minor modifications to the processing and modelling workflows. Finally, field spikelet data is also inverted to demonstrate that these data can be fit using subsurface models consistent with a reference surface NMR inversion.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"9 18","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of spikelets in steady-state surface nuclear magnetic resonance data\",\"authors\":\"Denys Grombacher, Matthew Peter Griffiths, Mathias Østbjerg Vang, Mason Andrew Kass, Jakob Juul Larsen\",\"doi\":\"10.1190/geo2023-0145.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spikelets in NMR data occur at predictable frequencies depending only on the repetition time of the excitation sequence. While spikelets are well documented in other NMR fields, we report their presence in steady-state surface NMR data for the first time. These observations are accompanied by analytical developments to understand and predict their behaviour, which follow directly from existing steady-state surface NMR modelling. We show that spikelets represent copies of the surface NMR signal occurring at multiple locations in the frequency domain, including locations that are distinct from the Larmor frequency. These features are shown to be detectable without requiring additional effort in the field, and are shown to be readily processed and modeled with only minor modifications to the processing and modelling workflows. Finally, field spikelet data is also inverted to demonstrate that these data can be fit using subsurface models consistent with a reference surface NMR inversion.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"9 18\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0145.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0145.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振数据中的小穗以可预测的频率发生,仅取决于激励序列的重复时间。虽然小穗在其他核磁共振领域有很好的记录,但我们首次在稳态表面核磁共振数据中报道了它们的存在。这些观察伴随着分析的发展,以理解和预测它们的行为,这直接遵循现有的稳态表面核磁共振模型。我们发现,小穗代表了发生在频域多个位置的表面核磁共振信号的副本,包括与拉莫尔频率不同的位置。这些特征是可以检测到的,而不需要在现场进行额外的工作,并且可以很容易地处理和建模,只需要对处理和建模工作流程进行微小的修改。最后,还对现场小穗数据进行了反演,以证明这些数据可以使用与参考表面核磁共振反演一致的地下模型进行拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation of spikelets in steady-state surface nuclear magnetic resonance data
Spikelets in NMR data occur at predictable frequencies depending only on the repetition time of the excitation sequence. While spikelets are well documented in other NMR fields, we report their presence in steady-state surface NMR data for the first time. These observations are accompanied by analytical developments to understand and predict their behaviour, which follow directly from existing steady-state surface NMR modelling. We show that spikelets represent copies of the surface NMR signal occurring at multiple locations in the frequency domain, including locations that are distinct from the Larmor frequency. These features are shown to be detectable without requiring additional effort in the field, and are shown to be readily processed and modeled with only minor modifications to the processing and modelling workflows. Finally, field spikelet data is also inverted to demonstrate that these data can be fit using subsurface models consistent with a reference surface NMR inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信