{"title":"对3正则分区数取模4的同余","authors":"Cristina Ballantine, Mircea Merca","doi":"10.5802/crmath.512","DOIUrl":null,"url":null,"abstract":"The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"121 8","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences modulo 4 for the number of 3-regular partitions\",\"authors\":\"Cristina Ballantine, Mircea Merca\",\"doi\":\"10.5802/crmath.512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"121 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.512\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.512","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Congruences modulo 4 for the number of 3-regular partitions
The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.