对3正则分区数取模4的同余

Pub Date : 2023-11-10 DOI:10.5802/crmath.512
Cristina Ballantine, Mircea Merca
{"title":"对3正则分区数取模4的同余","authors":"Cristina Ballantine, Mircea Merca","doi":"10.5802/crmath.512","DOIUrl":null,"url":null,"abstract":"The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences modulo 4 for the number of 3-regular partitions\",\"authors\":\"Cristina Ballantine, Mircea Merca\",\"doi\":\"10.5802/crmath.512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,我们已经看到了大量的对b_3 (n)的同余,n的n -正则分割的数量。值得注意的是,缺少对b_3 (n)模4的同余。在本文中,我们引入了对b_3 (n)模4的Ramanujan型同余,涉及一些素数p同于11、13、17、19、23模24。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Congruences modulo 4 for the number of 3-regular partitions
The last decade has seen an abundance of congruences for b ℓ (n), the number of ℓ-regular partitions of n. Notably absent are congruences modulo 4 for b 3 (n). In this paper, we introduce Ramanujan type congruences modulo 4 for b 3 (2n) involving some primes p congruent to 11,13,17,19,23 modulo 24.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信