{"title":"多车道无人机交通管理的交叉口规划","authors":"Samiksha Rajkumar Nagrare, Ashwini Ratnoo, Debasish Ghose","doi":"10.2514/1.i011307","DOIUrl":null,"url":null,"abstract":"Unmanned aerial system (UAS) traffic management of airspace is a domain that demands strategic management of unmanned aerial vehicles (UAVs) for smooth and conflict-free movement in the uncharted low-altitude G airspace. In the context of the previously proposed CORRIDRONE structure, UAV traffic has to be organized in a shared volume of airspace connecting two or more corridors for a network of multilane corridors, resulting in the formation of aerial intersections. In this work, an intersection planning algorithm is proposed that aims to provide no-conflict paths to the UAVs inside the intersection volume. Paths are modeled as a function of the lanes involved in the transition, and conflict resolution is achieved by changing lanes. Optimized solutions are found among the conflicted UAV paths, such that only a few paths need modifying, optimizing the number of lane changes and time spent in the intersection. Simulation results, including random starting time intervals, various UAV sizes, corridor sizes, and differing numbers of lanes in intersecting corridors, are presented to demonstrate the concepts discussed in the paper.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"102 21","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection Planning for Multilane Unmanned Aerial Vehicle Traffic Management\",\"authors\":\"Samiksha Rajkumar Nagrare, Ashwini Ratnoo, Debasish Ghose\",\"doi\":\"10.2514/1.i011307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial system (UAS) traffic management of airspace is a domain that demands strategic management of unmanned aerial vehicles (UAVs) for smooth and conflict-free movement in the uncharted low-altitude G airspace. In the context of the previously proposed CORRIDRONE structure, UAV traffic has to be organized in a shared volume of airspace connecting two or more corridors for a network of multilane corridors, resulting in the formation of aerial intersections. In this work, an intersection planning algorithm is proposed that aims to provide no-conflict paths to the UAVs inside the intersection volume. Paths are modeled as a function of the lanes involved in the transition, and conflict resolution is achieved by changing lanes. Optimized solutions are found among the conflicted UAV paths, such that only a few paths need modifying, optimizing the number of lane changes and time spent in the intersection. Simulation results, including random starting time intervals, various UAV sizes, corridor sizes, and differing numbers of lanes in intersecting corridors, are presented to demonstrate the concepts discussed in the paper.\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"102 21\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011307\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Intersection Planning for Multilane Unmanned Aerial Vehicle Traffic Management
Unmanned aerial system (UAS) traffic management of airspace is a domain that demands strategic management of unmanned aerial vehicles (UAVs) for smooth and conflict-free movement in the uncharted low-altitude G airspace. In the context of the previously proposed CORRIDRONE structure, UAV traffic has to be organized in a shared volume of airspace connecting two or more corridors for a network of multilane corridors, resulting in the formation of aerial intersections. In this work, an intersection planning algorithm is proposed that aims to provide no-conflict paths to the UAVs inside the intersection volume. Paths are modeled as a function of the lanes involved in the transition, and conflict resolution is achieved by changing lanes. Optimized solutions are found among the conflicted UAV paths, such that only a few paths need modifying, optimizing the number of lane changes and time spent in the intersection. Simulation results, including random starting time intervals, various UAV sizes, corridor sizes, and differing numbers of lanes in intersecting corridors, are presented to demonstrate the concepts discussed in the paper.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.