非负标量曲率3-流形中质量的非线性等电容概念

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri
{"title":"非负标量曲率3-流形中质量的非线性等电容概念","authors":"Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri","doi":"10.3842/sigma.2023.091","DOIUrl":null,"url":null,"abstract":"We deal with suitable nonlinear versions of Jauregui's isocapacitary mass in 3-manifolds with nonnegative scalar curvature and compact outermost minimal boundary. These masses, which depend on a parameter $1 < p\\leq 2$, interpolate between Jauregui's mass $p=2$ and Huisken's isoperimetric mass, as $p \\to 1^+$. We derive positive mass theorems for these masses under mild conditions at infinity, and we show that these masses do coincide with the ADM mass when the latter is defined. We finally work out a nonlinear potential theoretic proof of the Penrose inequality in the optimal asymptotic regime.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"112 29","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nonlinear Isocapacitary Concepts of Mass in 3-Manifolds with Nonnegative Scalar Curvature\",\"authors\":\"Luca Benatti, Mattia Fogagnolo, Lorenzo Mazzieri\",\"doi\":\"10.3842/sigma.2023.091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We deal with suitable nonlinear versions of Jauregui's isocapacitary mass in 3-manifolds with nonnegative scalar curvature and compact outermost minimal boundary. These masses, which depend on a parameter $1 < p\\\\leq 2$, interpolate between Jauregui's mass $p=2$ and Huisken's isoperimetric mass, as $p \\\\to 1^+$. We derive positive mass theorems for these masses under mild conditions at infinity, and we show that these masses do coincide with the ADM mass when the latter is defined. We finally work out a nonlinear potential theoretic proof of the Penrose inequality in the optimal asymptotic regime.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"112 29\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.091\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.091","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了具有非负标量曲率和紧致最外极小边界的3流形中Jauregui等电容质量的合适非线性形式。这些质量依赖于一个参数$1 < p\leq 2$,在Jauregui的质量$p=2$和Huisken的等周质量$p \to 1^+$之间进行插值。我们在无限远处的温和条件下推导出这些质量的正质量定理,并证明这些质量确实与ADM质量一致,当后者被定义时。最后给出了Penrose不等式在最优渐近域下的非线性势理论证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Isocapacitary Concepts of Mass in 3-Manifolds with Nonnegative Scalar Curvature
We deal with suitable nonlinear versions of Jauregui's isocapacitary mass in 3-manifolds with nonnegative scalar curvature and compact outermost minimal boundary. These masses, which depend on a parameter $1 < p\leq 2$, interpolate between Jauregui's mass $p=2$ and Huisken's isoperimetric mass, as $p \to 1^+$. We derive positive mass theorems for these masses under mild conditions at infinity, and we show that these masses do coincide with the ADM mass when the latter is defined. We finally work out a nonlinear potential theoretic proof of the Penrose inequality in the optimal asymptotic regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信