铕掺杂CBP荧光粉的结构和发光性能研究

Khishn Kumar Kandiah, Amirul Syafiq Bin Abdul Jaafa, Vengadaesvaran Balakrishnan, Ramesh Subramaniam, Ramesh Kasi, Adarsh Kumar Pandey, Yee Seng Tan, Nasrudin Abdul Rahim, Sanjay J. Dhoble
{"title":"铕掺杂CBP荧光粉的结构和发光性能研究","authors":"Khishn Kumar Kandiah, Amirul Syafiq Bin Abdul Jaafa, Vengadaesvaran Balakrishnan, Ramesh Subramaniam, Ramesh Kasi, Adarsh Kumar Pandey, Yee Seng Tan, Nasrudin Abdul Rahim, Sanjay J. Dhoble","doi":"10.24294/jpse.v6i1.2939","DOIUrl":null,"url":null,"abstract":"Europium (Eu) doped Calcium borophosphate (CBP) phosphors were synthesized via solid-state diffusion method. The prepared Europium (Eu) doped Calcium borophosphate (CBP) powder was heated up to 600 ℃ for 6 h for a complete diffusion of ions in the powder system. XRD results showed that the prepared phosphors exhibit a well-crystallized hexagonal phase. The complete diffusion inside the CBP/Eu powder system has been confirmed by the presence of elements such as P, O, Bi, Ca, C, Eu, and B. Apart from that, the synthesized powder system has shown a down-conversion property where the Eu3+ activated ion was excited at 251 nm. Under the excitation of 251 nm, CBP/Eu phosphor showed intense emissions peaking at 591,617, and 693 nm due to the 5D0 → 7F1, 5D0 → 7F2, and 5D0 → 7F4 transition of Eu3+ ions. The obtained results suggest that the CBP/Eu phosphors have the potential for spectral response coating materials to improve the photovoltaic (PV) panel efficiency.","PeriodicalId":488604,"journal":{"name":"Journal of polymer science and engineering","volume":"110 35","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on structural and luminescence properties of Eu-doped CBP phosphors\",\"authors\":\"Khishn Kumar Kandiah, Amirul Syafiq Bin Abdul Jaafa, Vengadaesvaran Balakrishnan, Ramesh Subramaniam, Ramesh Kasi, Adarsh Kumar Pandey, Yee Seng Tan, Nasrudin Abdul Rahim, Sanjay J. Dhoble\",\"doi\":\"10.24294/jpse.v6i1.2939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Europium (Eu) doped Calcium borophosphate (CBP) phosphors were synthesized via solid-state diffusion method. The prepared Europium (Eu) doped Calcium borophosphate (CBP) powder was heated up to 600 ℃ for 6 h for a complete diffusion of ions in the powder system. XRD results showed that the prepared phosphors exhibit a well-crystallized hexagonal phase. The complete diffusion inside the CBP/Eu powder system has been confirmed by the presence of elements such as P, O, Bi, Ca, C, Eu, and B. Apart from that, the synthesized powder system has shown a down-conversion property where the Eu3+ activated ion was excited at 251 nm. Under the excitation of 251 nm, CBP/Eu phosphor showed intense emissions peaking at 591,617, and 693 nm due to the 5D0 → 7F1, 5D0 → 7F2, and 5D0 → 7F4 transition of Eu3+ ions. The obtained results suggest that the CBP/Eu phosphors have the potential for spectral response coating materials to improve the photovoltaic (PV) panel efficiency.\",\"PeriodicalId\":488604,\"journal\":{\"name\":\"Journal of polymer science and engineering\",\"volume\":\"110 35\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of polymer science and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/jpse.v6i1.2939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of polymer science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/jpse.v6i1.2939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用固态扩散法制备了铕(Eu)掺杂硼磷酸钙(CBP)荧光粉。将制备的铕(Eu)掺杂硼磷酸钙(CBP)粉体加热至600℃,保温6 h,使离子在粉体体系中完全扩散。XRD结果表明,所制备的荧光粉具有良好的六方晶相。P、O、Bi、Ca、C、Eu、b等元素的存在证实了CBP/Eu粉末体系内部的完全扩散。此外,合成的粉末体系表现出下转换的性质,Eu3+活化离子在251 nm处被激发。5D0→7F1、5D0→7F2和5D0→7F4三种Eu3+离子的跃迁,在251 nm激发下,CBP/Eu荧光粉在591,617和693 nm处表现出强烈的发射峰。研究结果表明,CBP/Eu荧光粉具有作为提高光伏板效率的光谱响应涂层材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on structural and luminescence properties of Eu-doped CBP phosphors
Europium (Eu) doped Calcium borophosphate (CBP) phosphors were synthesized via solid-state diffusion method. The prepared Europium (Eu) doped Calcium borophosphate (CBP) powder was heated up to 600 ℃ for 6 h for a complete diffusion of ions in the powder system. XRD results showed that the prepared phosphors exhibit a well-crystallized hexagonal phase. The complete diffusion inside the CBP/Eu powder system has been confirmed by the presence of elements such as P, O, Bi, Ca, C, Eu, and B. Apart from that, the synthesized powder system has shown a down-conversion property where the Eu3+ activated ion was excited at 251 nm. Under the excitation of 251 nm, CBP/Eu phosphor showed intense emissions peaking at 591,617, and 693 nm due to the 5D0 → 7F1, 5D0 → 7F2, and 5D0 → 7F4 transition of Eu3+ ions. The obtained results suggest that the CBP/Eu phosphors have the potential for spectral response coating materials to improve the photovoltaic (PV) panel efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信