{"title":"多模态频率感知交叉注意网络假新闻检测","authors":"Wei Cui, Xuerui Zhang, Mingsheng Shang","doi":"10.3233/jifs-233193","DOIUrl":null,"url":null,"abstract":"An increasing number of fake news combining text, images and other forms of multimedia are spreading rapidly across social platforms, leading to misinformation and negative impacts. Therefore, the automatic identification of multimodal fake news has become an important research hotspot in academia and industry. The key to multimedia fake news detection is to accurately extract features of both text and visual information, as well as to mine the correlation between them. However, most of the existing methods merely fuse the features of different modal information without fully extracting intra- and inter-modal connections and complementary information. In this work, we learn physical tampered cues for images in the frequency domain to supplement information in the image space domain, and propose a novel multimodal frequency-aware cross-attention network (MFCAN) that fuses the representations of text and image by jointly modelling intra- and inter-modal relationships between text and visual information whin a unified deep framework. In addition, we devise a new cross-modal fusion block based on the cross-attention mechanism that can leverage inter-modal relationships as well as intra-modal relationships to complement and enhance the features matching of text and image for fake news detection. We evaluated our approach on two publicly available datasets and the experimental results show that our proposed model outperforms existing baseline methods.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"119 7","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modality frequency-aware cross attention network for fake news detection\",\"authors\":\"Wei Cui, Xuerui Zhang, Mingsheng Shang\",\"doi\":\"10.3233/jifs-233193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of fake news combining text, images and other forms of multimedia are spreading rapidly across social platforms, leading to misinformation and negative impacts. Therefore, the automatic identification of multimodal fake news has become an important research hotspot in academia and industry. The key to multimedia fake news detection is to accurately extract features of both text and visual information, as well as to mine the correlation between them. However, most of the existing methods merely fuse the features of different modal information without fully extracting intra- and inter-modal connections and complementary information. In this work, we learn physical tampered cues for images in the frequency domain to supplement information in the image space domain, and propose a novel multimodal frequency-aware cross-attention network (MFCAN) that fuses the representations of text and image by jointly modelling intra- and inter-modal relationships between text and visual information whin a unified deep framework. In addition, we devise a new cross-modal fusion block based on the cross-attention mechanism that can leverage inter-modal relationships as well as intra-modal relationships to complement and enhance the features matching of text and image for fake news detection. We evaluated our approach on two publicly available datasets and the experimental results show that our proposed model outperforms existing baseline methods.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"119 7\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233193\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233193","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-modality frequency-aware cross attention network for fake news detection
An increasing number of fake news combining text, images and other forms of multimedia are spreading rapidly across social platforms, leading to misinformation and negative impacts. Therefore, the automatic identification of multimodal fake news has become an important research hotspot in academia and industry. The key to multimedia fake news detection is to accurately extract features of both text and visual information, as well as to mine the correlation between them. However, most of the existing methods merely fuse the features of different modal information without fully extracting intra- and inter-modal connections and complementary information. In this work, we learn physical tampered cues for images in the frequency domain to supplement information in the image space domain, and propose a novel multimodal frequency-aware cross-attention network (MFCAN) that fuses the representations of text and image by jointly modelling intra- and inter-modal relationships between text and visual information whin a unified deep framework. In addition, we devise a new cross-modal fusion block based on the cross-attention mechanism that can leverage inter-modal relationships as well as intra-modal relationships to complement and enhance the features matching of text and image for fake news detection. We evaluated our approach on two publicly available datasets and the experimental results show that our proposed model outperforms existing baseline methods.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.