类图网络中对流占优输运问题的Puiseux渐近展开:强边界相互作用

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Taras Mel’nyk, Christian Rohde
{"title":"类图网络中对流占优输运问题的Puiseux渐近展开:强边界相互作用","authors":"Taras Mel’nyk, Christian Rohde","doi":"10.3233/asy-231876","DOIUrl":null,"url":null,"abstract":"This article completes the study of the influence of the intensity parameter α in the boundary condition ε ∂ ν ε u ε − u ε V ε → · ν ε = ε α φ ε given on the boundary of a thin three-dimensional graph-like network consisting of thin cylinders that are interconnected by small domains (nodes) with diameters of order O ( ε ). Inside of the thin network a time-dependent convection-diffusion equation with high Péclet number of order O ( ε − 1 ) is considered. The novelty of this article is the case of α < 1, which indicates a strong intensity of physical processes on the boundary, described by the inhomogeneity φ ε (the cases α = 1 and α > 1 were previously studied by the same authors). A complete Puiseux asymptotic expansion is constructed for the solution u ε as ε → 0, i.e., when the diffusion coefficients are eliminated and the thin network shrinks into a graph. Furthermore, the corresponding uniform pointwise and energy estimates are proved, which provide an approximation of the solution with a given accuracy in terms of the parameter ε.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":"119 18","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions\",\"authors\":\"Taras Mel’nyk, Christian Rohde\",\"doi\":\"10.3233/asy-231876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article completes the study of the influence of the intensity parameter α in the boundary condition ε ∂ ν ε u ε − u ε V ε → · ν ε = ε α φ ε given on the boundary of a thin three-dimensional graph-like network consisting of thin cylinders that are interconnected by small domains (nodes) with diameters of order O ( ε ). Inside of the thin network a time-dependent convection-diffusion equation with high Péclet number of order O ( ε − 1 ) is considered. The novelty of this article is the case of α < 1, which indicates a strong intensity of physical processes on the boundary, described by the inhomogeneity φ ε (the cases α = 1 and α > 1 were previously studied by the same authors). A complete Puiseux asymptotic expansion is constructed for the solution u ε as ε → 0, i.e., when the diffusion coefficients are eliminated and the thin network shrinks into a graph. Furthermore, the corresponding uniform pointwise and energy estimates are proved, which provide an approximation of the solution with a given accuracy in terms of the parameter ε.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\"119 18\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231876\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231876","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文完成了边界条件ε∂ν ε u ε−u ε V ε→·ν ε = ε α φ ε中强度参数α对由直径为O (ε)阶的小域(节点)连接的薄圆柱体组成的三维图状网络边界的影响的研究。在薄网络内部,考虑了一个具有O (ε−1)阶高psamclet数的随时间变化的对流扩散方程。本文的新颖之处在于α <1,表明边界上的物理过程强度较大,由非均匀性φ ε描述(当α = 1和α >(之前由同一作者研究过)。对于解u ε = ε→0,即当消去扩散系数,薄网络收缩成图时,构造了一个完全的Puiseux渐近展开。进一步证明了相应的均匀的点向估计和能量估计,给出了用参数ε表示的具有给定精度的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions
This article completes the study of the influence of the intensity parameter α in the boundary condition ε ∂ ν ε u ε − u ε V ε → · ν ε = ε α φ ε given on the boundary of a thin three-dimensional graph-like network consisting of thin cylinders that are interconnected by small domains (nodes) with diameters of order O ( ε ). Inside of the thin network a time-dependent convection-diffusion equation with high Péclet number of order O ( ε − 1 ) is considered. The novelty of this article is the case of α < 1, which indicates a strong intensity of physical processes on the boundary, described by the inhomogeneity φ ε (the cases α = 1 and α > 1 were previously studied by the same authors). A complete Puiseux asymptotic expansion is constructed for the solution u ε as ε → 0, i.e., when the diffusion coefficients are eliminated and the thin network shrinks into a graph. Furthermore, the corresponding uniform pointwise and energy estimates are proved, which provide an approximation of the solution with a given accuracy in terms of the parameter ε.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信