{"title":"类图网络中对流占优输运问题的Puiseux渐近展开:强边界相互作用","authors":"Taras Mel’nyk, Christian Rohde","doi":"10.3233/asy-231876","DOIUrl":null,"url":null,"abstract":"This article completes the study of the influence of the intensity parameter α in the boundary condition ε ∂ ν ε u ε − u ε V ε → · ν ε = ε α φ ε given on the boundary of a thin three-dimensional graph-like network consisting of thin cylinders that are interconnected by small domains (nodes) with diameters of order O ( ε ). Inside of the thin network a time-dependent convection-diffusion equation with high Péclet number of order O ( ε − 1 ) is considered. The novelty of this article is the case of α < 1, which indicates a strong intensity of physical processes on the boundary, described by the inhomogeneity φ ε (the cases α = 1 and α > 1 were previously studied by the same authors). A complete Puiseux asymptotic expansion is constructed for the solution u ε as ε → 0, i.e., when the diffusion coefficients are eliminated and the thin network shrinks into a graph. Furthermore, the corresponding uniform pointwise and energy estimates are proved, which provide an approximation of the solution with a given accuracy in terms of the parameter ε.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions\",\"authors\":\"Taras Mel’nyk, Christian Rohde\",\"doi\":\"10.3233/asy-231876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article completes the study of the influence of the intensity parameter α in the boundary condition ε ∂ ν ε u ε − u ε V ε → · ν ε = ε α φ ε given on the boundary of a thin three-dimensional graph-like network consisting of thin cylinders that are interconnected by small domains (nodes) with diameters of order O ( ε ). Inside of the thin network a time-dependent convection-diffusion equation with high Péclet number of order O ( ε − 1 ) is considered. The novelty of this article is the case of α < 1, which indicates a strong intensity of physical processes on the boundary, described by the inhomogeneity φ ε (the cases α = 1 and α > 1 were previously studied by the same authors). A complete Puiseux asymptotic expansion is constructed for the solution u ε as ε → 0, i.e., when the diffusion coefficients are eliminated and the thin network shrinks into a graph. Furthermore, the corresponding uniform pointwise and energy estimates are proved, which provide an approximation of the solution with a given accuracy in terms of the parameter ε.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231876\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-231876","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: Strong boundary interactions
This article completes the study of the influence of the intensity parameter α in the boundary condition ε ∂ ν ε u ε − u ε V ε → · ν ε = ε α φ ε given on the boundary of a thin three-dimensional graph-like network consisting of thin cylinders that are interconnected by small domains (nodes) with diameters of order O ( ε ). Inside of the thin network a time-dependent convection-diffusion equation with high Péclet number of order O ( ε − 1 ) is considered. The novelty of this article is the case of α < 1, which indicates a strong intensity of physical processes on the boundary, described by the inhomogeneity φ ε (the cases α = 1 and α > 1 were previously studied by the same authors). A complete Puiseux asymptotic expansion is constructed for the solution u ε as ε → 0, i.e., when the diffusion coefficients are eliminated and the thin network shrinks into a graph. Furthermore, the corresponding uniform pointwise and energy estimates are proved, which provide an approximation of the solution with a given accuracy in terms of the parameter ε.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.