邻边夹紧、两边简支均载矩形板的闭型解

IF 2.3 4区 工程技术 Q1 MATHEMATICS, APPLIED
Ming Jin
{"title":"邻边夹紧、两边简支均载矩形板的闭型解","authors":"Ming Jin","doi":"10.1002/zamm.202200583","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a closed form solution is proposed on bending of uniformly loaded rectangular plates with adjacent edges clamped and the two others simply supported (CCSS). Deflection surface can be expressed by a double sine series referred to as Navier solution. Numerical results of deflection, bending moments agree with existing solutions including solutions of finite element model (FEM).","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A closed form solution for uniformly loaded rectangular plates with adjacent edges clamped and the two others simply supported (CCSS)\",\"authors\":\"Ming Jin\",\"doi\":\"10.1002/zamm.202200583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a closed form solution is proposed on bending of uniformly loaded rectangular plates with adjacent edges clamped and the two others simply supported (CCSS). Deflection surface can be expressed by a double sine series referred to as Navier solution. Numerical results of deflection, bending moments agree with existing solutions including solutions of finite element model (FEM).\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202200583\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202200583","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了邻边夹紧、两端简支均加载矩形板弯曲问题的封闭形式解。挠度曲面可以用二重正弦级数表示,称为纳维耶解。挠度、弯矩的数值计算结果与已有的包括有限元模型的解一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A closed form solution for uniformly loaded rectangular plates with adjacent edges clamped and the two others simply supported (CCSS)
Abstract In this paper, a closed form solution is proposed on bending of uniformly loaded rectangular plates with adjacent edges clamped and the two others simply supported (CCSS). Deflection surface can be expressed by a double sine series referred to as Navier solution. Numerical results of deflection, bending moments agree with existing solutions including solutions of finite element model (FEM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
199
审稿时长
3.0 months
期刊介绍: ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信