基于声学超材料的无叶风扇降噪数值模拟与实验研究

IF 1.7 4区 物理与天体物理
Xiupeng Wu, Changzheng Chen, Dacheng Zhang, Xianming Sun, Yang Song, Fan Yang
{"title":"基于声学超材料的无叶风扇降噪数值模拟与实验研究","authors":"Xiupeng Wu,&nbsp;Changzheng Chen,&nbsp;Dacheng Zhang,&nbsp;Xianming Sun,&nbsp;Yang Song,&nbsp;Fan Yang","doi":"10.1007/s40857-023-00311-x","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing demand for household appliances, people are putting forward higher requirements for their sound quality. In this paper, we apply the theory of acoustic metamaterials to a bladeless fan and propose a curly space-type acoustic metamaterial (CSAM) to optimize the sound quality while ensuring the airflow of the bladeless fan. The acoustic transmission loss of CSAM is calculated by numerical simulations. Based on the hybrid approach to calculating aerodynamic acoustics (CAA) to calculate the aerodynamic noise of the bladeless fan, the ICFD module of Actran is used to convert the CFD simulated data into sound field data. The internal flow field and sound field of the bladeless fan with or without CSAM are compared and analyzed. Finally, an experimental test is done to verify the noise reduction effect and air velocity change after adding CSAM. The analysis shows that the change in the air velocity of the bladeless fan by adding CSAM is not apparent, and the sound pressure level at the monitoring point is reduced. The experimental results show that the noise of the bladeless fan is reduced by 4.9 dB after adding CSAM, and the wind speed at the location of the monitoring point is increased by 0.08 m/s. Without affecting the air velocity, CSAM can change the intensity of the sound source inside the bladeless fan and effectively suppress the aerodynamic noise. It demonstrates the feasibility of acoustic metamaterials to reduce aerodynamic noise.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"52 1","pages":"57 - 67"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation and Experimental Study of Noise Reduction of Bladeless Fan Based on Acoustic Metamaterials\",\"authors\":\"Xiupeng Wu,&nbsp;Changzheng Chen,&nbsp;Dacheng Zhang,&nbsp;Xianming Sun,&nbsp;Yang Song,&nbsp;Fan Yang\",\"doi\":\"10.1007/s40857-023-00311-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing demand for household appliances, people are putting forward higher requirements for their sound quality. In this paper, we apply the theory of acoustic metamaterials to a bladeless fan and propose a curly space-type acoustic metamaterial (CSAM) to optimize the sound quality while ensuring the airflow of the bladeless fan. The acoustic transmission loss of CSAM is calculated by numerical simulations. Based on the hybrid approach to calculating aerodynamic acoustics (CAA) to calculate the aerodynamic noise of the bladeless fan, the ICFD module of Actran is used to convert the CFD simulated data into sound field data. The internal flow field and sound field of the bladeless fan with or without CSAM are compared and analyzed. Finally, an experimental test is done to verify the noise reduction effect and air velocity change after adding CSAM. The analysis shows that the change in the air velocity of the bladeless fan by adding CSAM is not apparent, and the sound pressure level at the monitoring point is reduced. The experimental results show that the noise of the bladeless fan is reduced by 4.9 dB after adding CSAM, and the wind speed at the location of the monitoring point is increased by 0.08 m/s. Without affecting the air velocity, CSAM can change the intensity of the sound source inside the bladeless fan and effectively suppress the aerodynamic noise. It demonstrates the feasibility of acoustic metamaterials to reduce aerodynamic noise.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"52 1\",\"pages\":\"57 - 67\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-023-00311-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-023-00311-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对家用电器的要求越来越高,对其音质也提出了更高的要求。本文将声学超材料理论应用于无叶风扇,提出了一种卷曲空间型声学超材料(CSAM),在保证无叶风扇气流的同时优化了音质。通过数值模拟计算了 CSAM 的声学传输损耗。基于气动声学混合计算方法(CAA)计算无叶风扇的气动噪声,使用 Actran 的 ICFD 模块将 CFD 模拟数据转换为声场数据。对有无 CSAM 的无叶风扇的内部流场和声场进行了比较和分析。最后,进行了实验测试,以验证添加 CSAM 后的降噪效果和风速变化。分析表明,添加 CSAM 后无叶风机的风速变化不明显,监测点的声压级有所降低。实验结果表明,添加 CSAM 后,无叶风机的噪声降低了 4.9 dB,监测点位置的风速增加了 0.08 m/s。在不影响风速的情况下,CSAM 可以改变无叶风机内部声源的强度,有效抑制空气动力噪声。这证明了声学超材料降低空气动力噪声的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical Simulation and Experimental Study of Noise Reduction of Bladeless Fan Based on Acoustic Metamaterials

Numerical Simulation and Experimental Study of Noise Reduction of Bladeless Fan Based on Acoustic Metamaterials

With the increasing demand for household appliances, people are putting forward higher requirements for their sound quality. In this paper, we apply the theory of acoustic metamaterials to a bladeless fan and propose a curly space-type acoustic metamaterial (CSAM) to optimize the sound quality while ensuring the airflow of the bladeless fan. The acoustic transmission loss of CSAM is calculated by numerical simulations. Based on the hybrid approach to calculating aerodynamic acoustics (CAA) to calculate the aerodynamic noise of the bladeless fan, the ICFD module of Actran is used to convert the CFD simulated data into sound field data. The internal flow field and sound field of the bladeless fan with or without CSAM are compared and analyzed. Finally, an experimental test is done to verify the noise reduction effect and air velocity change after adding CSAM. The analysis shows that the change in the air velocity of the bladeless fan by adding CSAM is not apparent, and the sound pressure level at the monitoring point is reduced. The experimental results show that the noise of the bladeless fan is reduced by 4.9 dB after adding CSAM, and the wind speed at the location of the monitoring point is increased by 0.08 m/s. Without affecting the air velocity, CSAM can change the intensity of the sound source inside the bladeless fan and effectively suppress the aerodynamic noise. It demonstrates the feasibility of acoustic metamaterials to reduce aerodynamic noise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acoustics Australia
Acoustics Australia ACOUSTICS-
自引率
5.90%
发文量
24
期刊介绍: Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信