{"title":"一种基于机器学习的增强情感计算框架医疗物联网用于心理健康问题的高效先发制人决策","authors":"Aurobind Ganesh, R. Ramachandiran","doi":"10.3233/jifs-235503","DOIUrl":null,"url":null,"abstract":"Globally, the two main causes of young people dying are mental health issues and suicide. A mental health issue is a condition of physiological disorder that inhibits with the vital process of the brain. The amount of individuals with psychiatric illnesses has considerably increased during the past several years. The majority of individuals with mental disorders reside in India. The mental illness can have an impact on a person’s health, thoughts, behaviour, or feelings. The capacity of controlling one’s thoughts, emotions, and behaviour might help an individual to deal with challenging circumstances, build relationships with others, and navigate life’s problems. With a primary focus on the healthcare domain and human-computer interaction, the capacity to recognize human emotions via physiological and facial expressions opens up important research ideas as well as application-oriented potential. Affective computing has recently become one of the areas of study that has received the greatest interest from professionals and academics in a variety of sectors. Nevertheless, despite the rise in articles published, the reviews of a particular aspect of affective computing in mental health still are limited and have certain inadequacies. As a result, a literature survey on the use of affective computing in India to make decisions about mental health issues is discussed. As a result, the paper focuses on how traditional techniques used to monitor and assess physiological data from humans by utilizing deep learning and machine learning approaches for humans’ affect recognition (AR) using Affective computing (AfC) which is a combination of computer science, AI, and cognitive science subjects (such as psychology and psychosocial).","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"120 46","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enhanced affective computing-based framework using machine learning & medical IoT for the efficient pre-emptive decision-making of mental health problems\",\"authors\":\"Aurobind Ganesh, R. Ramachandiran\",\"doi\":\"10.3233/jifs-235503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Globally, the two main causes of young people dying are mental health issues and suicide. A mental health issue is a condition of physiological disorder that inhibits with the vital process of the brain. The amount of individuals with psychiatric illnesses has considerably increased during the past several years. The majority of individuals with mental disorders reside in India. The mental illness can have an impact on a person’s health, thoughts, behaviour, or feelings. The capacity of controlling one’s thoughts, emotions, and behaviour might help an individual to deal with challenging circumstances, build relationships with others, and navigate life’s problems. With a primary focus on the healthcare domain and human-computer interaction, the capacity to recognize human emotions via physiological and facial expressions opens up important research ideas as well as application-oriented potential. Affective computing has recently become one of the areas of study that has received the greatest interest from professionals and academics in a variety of sectors. Nevertheless, despite the rise in articles published, the reviews of a particular aspect of affective computing in mental health still are limited and have certain inadequacies. As a result, a literature survey on the use of affective computing in India to make decisions about mental health issues is discussed. As a result, the paper focuses on how traditional techniques used to monitor and assess physiological data from humans by utilizing deep learning and machine learning approaches for humans’ affect recognition (AR) using Affective computing (AfC) which is a combination of computer science, AI, and cognitive science subjects (such as psychology and psychosocial).\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"120 46\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-235503\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-235503","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An enhanced affective computing-based framework using machine learning & medical IoT for the efficient pre-emptive decision-making of mental health problems
Globally, the two main causes of young people dying are mental health issues and suicide. A mental health issue is a condition of physiological disorder that inhibits with the vital process of the brain. The amount of individuals with psychiatric illnesses has considerably increased during the past several years. The majority of individuals with mental disorders reside in India. The mental illness can have an impact on a person’s health, thoughts, behaviour, or feelings. The capacity of controlling one’s thoughts, emotions, and behaviour might help an individual to deal with challenging circumstances, build relationships with others, and navigate life’s problems. With a primary focus on the healthcare domain and human-computer interaction, the capacity to recognize human emotions via physiological and facial expressions opens up important research ideas as well as application-oriented potential. Affective computing has recently become one of the areas of study that has received the greatest interest from professionals and academics in a variety of sectors. Nevertheless, despite the rise in articles published, the reviews of a particular aspect of affective computing in mental health still are limited and have certain inadequacies. As a result, a literature survey on the use of affective computing in India to make decisions about mental health issues is discussed. As a result, the paper focuses on how traditional techniques used to monitor and assess physiological data from humans by utilizing deep learning and machine learning approaches for humans’ affect recognition (AR) using Affective computing (AfC) which is a combination of computer science, AI, and cognitive science subjects (such as psychology and psychosocial).
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.