{"title":"基于混合深度学习的瑜伽姿势识别模型的人工藻类优化器","authors":"Nagalakshmi Vallabhaneni, Panneer Prabhavathy","doi":"10.3233/jifs-233583","DOIUrl":null,"url":null,"abstract":"Numerous people are interested in learning yoga due to the increased tension levels in the modern lifestyle, and there are a variety of techniques or resources available. Yoga is practiced in yoga centers, by personal instructors, and through books, the Internet, recorded videos, etc. As the aforementioned resources may not always be available, a large number of people will opt for self-study in fast-paced lifestyles. Self-learning makes it impossible to recognize an incorrect posture. Incorrect poses will have a negative effect on the patient’s health, causing severe agony and long-term chronic issues. Computer vision (CV)-related techniques derive pose features and conduct pose analysis using non-invasive CV methods. The application of machine learning (ML) and artificial intelligence (AI) techniques to an inter-disciplinary field like yoga becomes quite difficult. Due to its potent feature learning ability, deep learning (DL) has recently achieved an impressive level of performance in classifying yoga poses. In this paper, an artificial algae optimizer with hybrid deep learning-based yoga pose estimation (AAOHDL-YPE) model is presented. The presented AAOHDL-YPE model analyzes yoga video clips to estimate pose. Utilizing Part Confidence Map and Part Affinity Field with bipartite equivalent and parsing, OpenPose can be employed to determine the joint location. The deep belief network (DBN) model is then used for Yoga recognition. Finally, the AAO algorithm is utilized to enhance the EfficientNet model’s recognition performance. The results of a comprehensive experimentation analysis reveal that the AAOHDL-YPE technique produces superior results in comparison to existing methods.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"120 35","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial algae optimizer with hybrid deep learning based yoga posture recognition model\",\"authors\":\"Nagalakshmi Vallabhaneni, Panneer Prabhavathy\",\"doi\":\"10.3233/jifs-233583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous people are interested in learning yoga due to the increased tension levels in the modern lifestyle, and there are a variety of techniques or resources available. Yoga is practiced in yoga centers, by personal instructors, and through books, the Internet, recorded videos, etc. As the aforementioned resources may not always be available, a large number of people will opt for self-study in fast-paced lifestyles. Self-learning makes it impossible to recognize an incorrect posture. Incorrect poses will have a negative effect on the patient’s health, causing severe agony and long-term chronic issues. Computer vision (CV)-related techniques derive pose features and conduct pose analysis using non-invasive CV methods. The application of machine learning (ML) and artificial intelligence (AI) techniques to an inter-disciplinary field like yoga becomes quite difficult. Due to its potent feature learning ability, deep learning (DL) has recently achieved an impressive level of performance in classifying yoga poses. In this paper, an artificial algae optimizer with hybrid deep learning-based yoga pose estimation (AAOHDL-YPE) model is presented. The presented AAOHDL-YPE model analyzes yoga video clips to estimate pose. Utilizing Part Confidence Map and Part Affinity Field with bipartite equivalent and parsing, OpenPose can be employed to determine the joint location. The deep belief network (DBN) model is then used for Yoga recognition. Finally, the AAO algorithm is utilized to enhance the EfficientNet model’s recognition performance. The results of a comprehensive experimentation analysis reveal that the AAOHDL-YPE technique produces superior results in comparison to existing methods.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"120 35\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-233583\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-233583","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Artificial algae optimizer with hybrid deep learning based yoga posture recognition model
Numerous people are interested in learning yoga due to the increased tension levels in the modern lifestyle, and there are a variety of techniques or resources available. Yoga is practiced in yoga centers, by personal instructors, and through books, the Internet, recorded videos, etc. As the aforementioned resources may not always be available, a large number of people will opt for self-study in fast-paced lifestyles. Self-learning makes it impossible to recognize an incorrect posture. Incorrect poses will have a negative effect on the patient’s health, causing severe agony and long-term chronic issues. Computer vision (CV)-related techniques derive pose features and conduct pose analysis using non-invasive CV methods. The application of machine learning (ML) and artificial intelligence (AI) techniques to an inter-disciplinary field like yoga becomes quite difficult. Due to its potent feature learning ability, deep learning (DL) has recently achieved an impressive level of performance in classifying yoga poses. In this paper, an artificial algae optimizer with hybrid deep learning-based yoga pose estimation (AAOHDL-YPE) model is presented. The presented AAOHDL-YPE model analyzes yoga video clips to estimate pose. Utilizing Part Confidence Map and Part Affinity Field with bipartite equivalent and parsing, OpenPose can be employed to determine the joint location. The deep belief network (DBN) model is then used for Yoga recognition. Finally, the AAO algorithm is utilized to enhance the EfficientNet model’s recognition performance. The results of a comprehensive experimentation analysis reveal that the AAOHDL-YPE technique produces superior results in comparison to existing methods.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.