一种六轴四轴无人机重量优化生成设计

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Mariam Md Ghazaly, Kueh Tze Jun
{"title":"一种六轴四轴无人机重量优化生成设计","authors":"Mariam Md Ghazaly, Kueh Tze Jun","doi":"10.30880/ijie.2023.15.04.009","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs), known as drones, can be remotely operated using embedded technology and software-controlled flight plans. A six-axis drone's main problem is that its significant weight limits how much it can be used. As a result, the flexibility and endurance of the drone's design are necessary for excellent performance during altitude displacement. In order to create a body frame for the quadcopter, the project intends to solve the weight optimization problem via generative design. The three main steps of the optimization attempts utilizing generative design procedures are (a) abstraction, (b) initialization, and (c) interpretation. These are accomplished by employing the five generative design processes. The stress analysis and the generative design process were used to confirm that the generative design technique will help reduce the drone's weight. The drone using three (3) generative designs, was set to a total weight of less than 1kg. The results show that Generative Design 2 shows good optimization as follows, (a)50.00% of parts of assembly optimized from eight parts to four parts, (b) 54.09% of the weight of the body frame optimized from 1.1565kg to 0.531kg, (c) 36.17% of the height of the body frame optimized from 94mm to 60mm, (d) 45.44% of stress analysis increased from 3.457MPa to 5.028MPa, (e) 83.00% reduction of displacement elongation from 3.918mm to 0.666mm and (f) 61.25% of production time optimized from 40 hours to 15.5 hours.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Design of A 6-Axis Quadcopter Drone for Weight Optimization\",\"authors\":\"Mariam Md Ghazaly, Kueh Tze Jun\",\"doi\":\"10.30880/ijie.2023.15.04.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs), known as drones, can be remotely operated using embedded technology and software-controlled flight plans. A six-axis drone's main problem is that its significant weight limits how much it can be used. As a result, the flexibility and endurance of the drone's design are necessary for excellent performance during altitude displacement. In order to create a body frame for the quadcopter, the project intends to solve the weight optimization problem via generative design. The three main steps of the optimization attempts utilizing generative design procedures are (a) abstraction, (b) initialization, and (c) interpretation. These are accomplished by employing the five generative design processes. The stress analysis and the generative design process were used to confirm that the generative design technique will help reduce the drone's weight. The drone using three (3) generative designs, was set to a total weight of less than 1kg. The results show that Generative Design 2 shows good optimization as follows, (a)50.00% of parts of assembly optimized from eight parts to four parts, (b) 54.09% of the weight of the body frame optimized from 1.1565kg to 0.531kg, (c) 36.17% of the height of the body frame optimized from 94mm to 60mm, (d) 45.44% of stress analysis increased from 3.457MPa to 5.028MPa, (e) 83.00% reduction of displacement elongation from 3.918mm to 0.666mm and (f) 61.25% of production time optimized from 40 hours to 15.5 hours.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.04.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.04.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(uav),被称为无人机,可以使用嵌入式技术和软件控制的飞行计划进行远程操作。六轴无人机的主要问题是其巨大的重量限制了它的使用范围。因此,无人机设计的灵活性和耐久性对于在高度位移期间的优异性能是必要的。为了创建四轴飞行器的机体框架,本项目打算通过生成设计来解决重量优化问题。利用生成式设计过程的优化尝试的三个主要步骤是(a)抽象,(b)初始化和(c)解释。这些都是通过采用五个生成设计过程来完成的。应力分析和生成设计过程验证了生成设计技术有助于降低无人机的重量。无人机使用三(3)生成设计,被设置为总重量不到1公斤。结果表明,生成设计2优化效果良好,(a)总成零件由8个零件优化为4个零件,(b)车身框架重量由1.1565kg优化为0.531kg,占54.09%,车身框架高度由94mm优化为60mm,占36.17%,(d)应力分析由3.457MPa优化为5.028MPa,占45.44%。(e)位移伸长率从3.918mm降低到0.666mm,减少了83.00%;(f)生产时间从40小时优化到15.5小时,减少了61.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Design of A 6-Axis Quadcopter Drone for Weight Optimization
Unmanned aerial vehicles (UAVs), known as drones, can be remotely operated using embedded technology and software-controlled flight plans. A six-axis drone's main problem is that its significant weight limits how much it can be used. As a result, the flexibility and endurance of the drone's design are necessary for excellent performance during altitude displacement. In order to create a body frame for the quadcopter, the project intends to solve the weight optimization problem via generative design. The three main steps of the optimization attempts utilizing generative design procedures are (a) abstraction, (b) initialization, and (c) interpretation. These are accomplished by employing the five generative design processes. The stress analysis and the generative design process were used to confirm that the generative design technique will help reduce the drone's weight. The drone using three (3) generative designs, was set to a total weight of less than 1kg. The results show that Generative Design 2 shows good optimization as follows, (a)50.00% of parts of assembly optimized from eight parts to four parts, (b) 54.09% of the weight of the body frame optimized from 1.1565kg to 0.531kg, (c) 36.17% of the height of the body frame optimized from 94mm to 60mm, (d) 45.44% of stress analysis increased from 3.457MPa to 5.028MPa, (e) 83.00% reduction of displacement elongation from 3.918mm to 0.666mm and (f) 61.25% of production time optimized from 40 hours to 15.5 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Integrated Engineering
International Journal of Integrated Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
0.00%
发文量
57
期刊介绍: The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信