Abd Halim Embong, Firdaus Mohd Nor, Syamsul Bahrin Abdul Hamid
{"title":"优化雾基沐浴:水彩可视化和热成像技术对水分布和保护的综合研究","authors":"Abd Halim Embong, Firdaus Mohd Nor, Syamsul Bahrin Abdul Hamid","doi":"10.30880/ijie.2023.15.04.011","DOIUrl":null,"url":null,"abstract":"Conducting ablution constitutes a prerequisite for Muslims prior to engaging in prayer. This ritualistic practice involves the cleansing and wiping of specific body parts, including the hands, face, arms up to the elbows, head, and feet. Ensuring comprehensive water coverage of the aforementioned areas is a crucial criterion during ablution. However, excessive water consumption often occurs when Muslims perform ablution to achieve full coverage. Consequently, a more ecologically sustainable approach to ablution is necessary to minimize water wastage. A proposed water mist spray device aims to optimize water usage while adhering to the Islamic jurisprudence requirements of complete water coverage on ablution parts.To assess water coverage using the mist spray, an evenness distribution profile is employed through atomized mist colorization on paper and thermal imaging of ablution parts. An appropriate spray nozzle is chosen based on an analysis of spray distribution and coverage patterns on the target surface, utilizing image processing techniques. The proposed methodology involves mixing water with red watercolour and manually pumping it through the selected nozzle using an off-the-shelf water sprayer, thereby atomizing the coloured water to stain white paper. Subsequently, the paper is converted into a digital image and analysed using ImageJ software to determine the mist spray coverage percentage, spatial spread at various distances, and the extraction of stain and droplet sizes. This technique is applied to different types and sizes of spraynozzles to identify the most suitable nozzle for the prototype.The findings demonstrate that nozzles with smaller exit holes and higher water pressure yield more extensive spray coverage on the target surface. Upon selecting the appropriate nozzle, a Portable Ablution Mist Spray Device prototype is employed to evaluate water coverage for the ablution body parts. Thermal images of the ablution parts are captured before and after the ritual, with the temperature differences being analysed. The thermal images reveal a comprehensive and uniform spray distribution on the ablution body parts, accompanied by a temperature difference ranging from 0.9°C to 3.8°C among various participants.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":"71 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Mist-Based Ablution: A Comprehensive Study of Water Distribution and Conservation Using Watercolour Visualization and Thermal Imaging Techniques\",\"authors\":\"Abd Halim Embong, Firdaus Mohd Nor, Syamsul Bahrin Abdul Hamid\",\"doi\":\"10.30880/ijie.2023.15.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conducting ablution constitutes a prerequisite for Muslims prior to engaging in prayer. This ritualistic practice involves the cleansing and wiping of specific body parts, including the hands, face, arms up to the elbows, head, and feet. Ensuring comprehensive water coverage of the aforementioned areas is a crucial criterion during ablution. However, excessive water consumption often occurs when Muslims perform ablution to achieve full coverage. Consequently, a more ecologically sustainable approach to ablution is necessary to minimize water wastage. A proposed water mist spray device aims to optimize water usage while adhering to the Islamic jurisprudence requirements of complete water coverage on ablution parts.To assess water coverage using the mist spray, an evenness distribution profile is employed through atomized mist colorization on paper and thermal imaging of ablution parts. An appropriate spray nozzle is chosen based on an analysis of spray distribution and coverage patterns on the target surface, utilizing image processing techniques. The proposed methodology involves mixing water with red watercolour and manually pumping it through the selected nozzle using an off-the-shelf water sprayer, thereby atomizing the coloured water to stain white paper. Subsequently, the paper is converted into a digital image and analysed using ImageJ software to determine the mist spray coverage percentage, spatial spread at various distances, and the extraction of stain and droplet sizes. This technique is applied to different types and sizes of spraynozzles to identify the most suitable nozzle for the prototype.The findings demonstrate that nozzles with smaller exit holes and higher water pressure yield more extensive spray coverage on the target surface. Upon selecting the appropriate nozzle, a Portable Ablution Mist Spray Device prototype is employed to evaluate water coverage for the ablution body parts. Thermal images of the ablution parts are captured before and after the ritual, with the temperature differences being analysed. The thermal images reveal a comprehensive and uniform spray distribution on the ablution body parts, accompanied by a temperature difference ranging from 0.9°C to 3.8°C among various participants.\",\"PeriodicalId\":14189,\"journal\":{\"name\":\"International Journal of Integrated Engineering\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Integrated Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30880/ijie.2023.15.04.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.04.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing Mist-Based Ablution: A Comprehensive Study of Water Distribution and Conservation Using Watercolour Visualization and Thermal Imaging Techniques
Conducting ablution constitutes a prerequisite for Muslims prior to engaging in prayer. This ritualistic practice involves the cleansing and wiping of specific body parts, including the hands, face, arms up to the elbows, head, and feet. Ensuring comprehensive water coverage of the aforementioned areas is a crucial criterion during ablution. However, excessive water consumption often occurs when Muslims perform ablution to achieve full coverage. Consequently, a more ecologically sustainable approach to ablution is necessary to minimize water wastage. A proposed water mist spray device aims to optimize water usage while adhering to the Islamic jurisprudence requirements of complete water coverage on ablution parts.To assess water coverage using the mist spray, an evenness distribution profile is employed through atomized mist colorization on paper and thermal imaging of ablution parts. An appropriate spray nozzle is chosen based on an analysis of spray distribution and coverage patterns on the target surface, utilizing image processing techniques. The proposed methodology involves mixing water with red watercolour and manually pumping it through the selected nozzle using an off-the-shelf water sprayer, thereby atomizing the coloured water to stain white paper. Subsequently, the paper is converted into a digital image and analysed using ImageJ software to determine the mist spray coverage percentage, spatial spread at various distances, and the extraction of stain and droplet sizes. This technique is applied to different types and sizes of spraynozzles to identify the most suitable nozzle for the prototype.The findings demonstrate that nozzles with smaller exit holes and higher water pressure yield more extensive spray coverage on the target surface. Upon selecting the appropriate nozzle, a Portable Ablution Mist Spray Device prototype is employed to evaluate water coverage for the ablution body parts. Thermal images of the ablution parts are captured before and after the ritual, with the temperature differences being analysed. The thermal images reveal a comprehensive and uniform spray distribution on the ablution body parts, accompanied by a temperature difference ranging from 0.9°C to 3.8°C among various participants.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.