{"title":"具有色散反射率的库德里亚绍夫自相位调制定律的啁啾隙孤子","authors":"Khalil Al-Ghafri","doi":"10.1051/jeos/2023038","DOIUrl":null,"url":null,"abstract":"The present study is devoted to investigate the chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. Thus, the mathematical model consists of coupled nonlinear Schrödinger equation (NLSE) that describes pulse propagation in a medium of fiber Bragg gratings (BGs). To reach an integrable form for this intricate model, the phase-matching condition is applied to derive equivalent equations that are handled analytically. By means of auxiliary equation method which possesses Jacobi elliptic function (JEF) solutions, various forms of soliton solutions are extracted when the modulus of JEF approaches 1. The generated chirped gap solitons have different types of structures such as bright, dark, singular, W-shaped, kink, anti-kink and Kink-dark solitons. Further to this, two soliton waves namely chirped bright quasi-soliton and chirped dark quasi-soliton are also created. The dynamic behaviors of chirped gap solitons are illustrated in addition to their corresponding chirp. It is noticed that self-phase modulation and dispersive reflectivity have remarkable influences on the pulse propagation. These detailed results may enhance the engineering applications related to the field of fiber BGs.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity\",\"authors\":\"Khalil Al-Ghafri\",\"doi\":\"10.1051/jeos/2023038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study is devoted to investigate the chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. Thus, the mathematical model consists of coupled nonlinear Schrödinger equation (NLSE) that describes pulse propagation in a medium of fiber Bragg gratings (BGs). To reach an integrable form for this intricate model, the phase-matching condition is applied to derive equivalent equations that are handled analytically. By means of auxiliary equation method which possesses Jacobi elliptic function (JEF) solutions, various forms of soliton solutions are extracted when the modulus of JEF approaches 1. The generated chirped gap solitons have different types of structures such as bright, dark, singular, W-shaped, kink, anti-kink and Kink-dark solitons. Further to this, two soliton waves namely chirped bright quasi-soliton and chirped dark quasi-soliton are also created. The dynamic behaviors of chirped gap solitons are illustrated in addition to their corresponding chirp. It is noticed that self-phase modulation and dispersive reflectivity have remarkable influences on the pulse propagation. These detailed results may enhance the engineering applications related to the field of fiber BGs.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2023038\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jeos/2023038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity
The present study is devoted to investigate the chirped gap solitons with Kudryashov’s law of self-phase modulation having dispersive reflectivity. Thus, the mathematical model consists of coupled nonlinear Schrödinger equation (NLSE) that describes pulse propagation in a medium of fiber Bragg gratings (BGs). To reach an integrable form for this intricate model, the phase-matching condition is applied to derive equivalent equations that are handled analytically. By means of auxiliary equation method which possesses Jacobi elliptic function (JEF) solutions, various forms of soliton solutions are extracted when the modulus of JEF approaches 1. The generated chirped gap solitons have different types of structures such as bright, dark, singular, W-shaped, kink, anti-kink and Kink-dark solitons. Further to this, two soliton waves namely chirped bright quasi-soliton and chirped dark quasi-soliton are also created. The dynamic behaviors of chirped gap solitons are illustrated in addition to their corresponding chirp. It is noticed that self-phase modulation and dispersive reflectivity have remarkable influences on the pulse propagation. These detailed results may enhance the engineering applications related to the field of fiber BGs.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.