Joshua S. North, Christopher K. Wikle, Erin M. Schliep
{"title":"动态系统数据驱动发现综述","authors":"Joshua S. North, Christopher K. Wikle, Erin M. Schliep","doi":"10.1111/insr.12554","DOIUrl":null,"url":null,"abstract":"Many real‐world scientific processes are governed by complex non‐linear dynamic systems that can be represented by differential equations. Recently, there has been an increased interest in learning, or discovering, the forms of the equations driving these complex non‐linear dynamic systems using data‐driven approaches. In this paper, we review the current literature on data‐driven discovery for dynamic systems. We provide a categorisation to the different approaches for data‐driven discovery and a unified mathematical framework to show the relationship between the approaches. Importantly, we discuss the role of statistics in the data‐driven discovery field, describe a possible approach by which the problem can be cast in a statistical framework and provide avenues for future work.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Review of Data‐Driven Discovery for Dynamic Systems\",\"authors\":\"Joshua S. North, Christopher K. Wikle, Erin M. Schliep\",\"doi\":\"10.1111/insr.12554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many real‐world scientific processes are governed by complex non‐linear dynamic systems that can be represented by differential equations. Recently, there has been an increased interest in learning, or discovering, the forms of the equations driving these complex non‐linear dynamic systems using data‐driven approaches. In this paper, we review the current literature on data‐driven discovery for dynamic systems. We provide a categorisation to the different approaches for data‐driven discovery and a unified mathematical framework to show the relationship between the approaches. Importantly, we discuss the role of statistics in the data‐driven discovery field, describe a possible approach by which the problem can be cast in a statistical framework and provide avenues for future work.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/insr.12554\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/insr.12554","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Review of Data‐Driven Discovery for Dynamic Systems
Many real‐world scientific processes are governed by complex non‐linear dynamic systems that can be represented by differential equations. Recently, there has been an increased interest in learning, or discovering, the forms of the equations driving these complex non‐linear dynamic systems using data‐driven approaches. In this paper, we review the current literature on data‐driven discovery for dynamic systems. We provide a categorisation to the different approaches for data‐driven discovery and a unified mathematical framework to show the relationship between the approaches. Importantly, we discuss the role of statistics in the data‐driven discovery field, describe a possible approach by which the problem can be cast in a statistical framework and provide avenues for future work.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.