量子群上相对编织群对称性的一种内在方法

IF 1.5 1区 数学 Q1 MATHEMATICS
Weiqiang Wang, Weinan Zhang
{"title":"量子群上相对编织群对称性的一种内在方法","authors":"Weiqiang Wang, Weinan Zhang","doi":"10.1112/plms.12562","DOIUrl":null,"url":null,"abstract":"Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"31 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An intrinsic approach to relative braid group symmetries on ı$\\\\imath$quantum groups\",\"authors\":\"Weiqiang Wang, Weinan Zhang\",\"doi\":\"10.1112/plms.12562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12562\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12562","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

摘要本文对由任意有限类型的量子对称对及其模所产生的(泛)量子群上的相对编织群对称性进行了一般研究。我们的方法是建立在拟矩阵的新缠结性质上的,我们在(德林菲尔德双)量子群上开发并编织了群对称性。得到了量子群上这些新对称性的显式公式。我们在量子群上建立了这些对称性的一些基本性质,与它们众所周知的量子群对应物惊人地相似。我们利用这些对称充分地建立了拟矩阵的秩1分解,并利用这一分解性质证明了这些新的对称满足相对辫状关系。因此,科尔布-佩莱格里尼和多布森-科尔布的猜想得到了肯定的解决。最后,上述方法允许我们首次在量子群上的模上构造相容的相对编织群作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intrinsic approach to relative braid group symmetries on ı$\imath$quantum groups
Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信