{"title":"量子群上相对编织群对称性的一种内在方法","authors":"Weiqiang Wang, Weinan Zhang","doi":"10.1112/plms.12562","DOIUrl":null,"url":null,"abstract":"Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"31 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An intrinsic approach to relative braid group symmetries on ı$\\\\imath$quantum groups\",\"authors\":\"Weiqiang Wang, Weinan Zhang\",\"doi\":\"10.1112/plms.12562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12562\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/plms.12562","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An intrinsic approach to relative braid group symmetries on ı$\imath$quantum groups
Abstract We initiate a general approach to the relative braid group symmetries on (universal) quantum groups, arising from quantum symmetric pairs of arbitrary finite types, and their modules. Our approach is built on new intertwining properties of quasi ‐matrices which we develop and braid group symmetries on (Drinfeld double) quantum groups. Explicit formulas for these new symmetries on quantum groups are obtained. We establish a number of fundamental properties for these symmetries on quantum groups, strikingly parallel to their well‐known quantum group counterparts. We apply these symmetries to fully establish rank 1 factorizations of quasi ‐matrices, and this factorization property, in turn, helps to show that the new symmetries satisfy relative braid relations. As a consequence, conjectures of Kolb–Pellegrini and Dobson–Kolb are settled affirmatively. Finally, the above approach allows us to construct compatible relative braid group actions on modules over quantum groups for the first time.
期刊介绍:
The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers.
The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.