{"title":"曲面的二次非完整约束与控制系统","authors":"Timothée Schmoderer, Witold Respondek","doi":"10.1007/s10883-023-09659-9","DOIUrl":null,"url":null,"abstract":"This paper addresses the equivalence problem of conic submanifolds in the tangent bundle of a smooth 2-dimensional manifold. Those are given by a quadratic relation between the velocities and are treated as nonholonomic constraints whose admissible curves are trajectories of the corresponding control systems, called quadratic systems. We deal with the problem of characterising and classifying conic submanifolds under the prism of feedback equivalence of control systems, both control-affine and fully nonlinear. The first main result of this work is a complete description of non-degenerate conic submanifolds via a characterisation under feedback transformations of the novel class of quadratic control-affine systems. This characterisation can explicitly be tested on structure functions defined for any control-affine system and gives a normal form of quadratisable systems and of conic submanifolds. Then, we consider the classification problem of regular conic submanifolds (ellipses, hyperbolas, and parabolas), which is treated via feedback classification of quadratic control-nonlinear systems. Our classification includes several normal forms of quadratic systems (in particular, normal forms not containing functional parameters as well as those containing neither functional nor real parameters) and, as a consequence, gives a classification of regular conic submanifolds.","PeriodicalId":54847,"journal":{"name":"Journal of Dynamical and Control Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Conic Nonholonomic Constraints on Surfaces and Control Systems\",\"authors\":\"Timothée Schmoderer, Witold Respondek\",\"doi\":\"10.1007/s10883-023-09659-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the equivalence problem of conic submanifolds in the tangent bundle of a smooth 2-dimensional manifold. Those are given by a quadratic relation between the velocities and are treated as nonholonomic constraints whose admissible curves are trajectories of the corresponding control systems, called quadratic systems. We deal with the problem of characterising and classifying conic submanifolds under the prism of feedback equivalence of control systems, both control-affine and fully nonlinear. The first main result of this work is a complete description of non-degenerate conic submanifolds via a characterisation under feedback transformations of the novel class of quadratic control-affine systems. This characterisation can explicitly be tested on structure functions defined for any control-affine system and gives a normal form of quadratisable systems and of conic submanifolds. Then, we consider the classification problem of regular conic submanifolds (ellipses, hyperbolas, and parabolas), which is treated via feedback classification of quadratic control-nonlinear systems. Our classification includes several normal forms of quadratic systems (in particular, normal forms not containing functional parameters as well as those containing neither functional nor real parameters) and, as a consequence, gives a classification of regular conic submanifolds.\",\"PeriodicalId\":54847,\"journal\":{\"name\":\"Journal of Dynamical and Control Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10883-023-09659-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10883-023-09659-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Conic Nonholonomic Constraints on Surfaces and Control Systems
This paper addresses the equivalence problem of conic submanifolds in the tangent bundle of a smooth 2-dimensional manifold. Those are given by a quadratic relation between the velocities and are treated as nonholonomic constraints whose admissible curves are trajectories of the corresponding control systems, called quadratic systems. We deal with the problem of characterising and classifying conic submanifolds under the prism of feedback equivalence of control systems, both control-affine and fully nonlinear. The first main result of this work is a complete description of non-degenerate conic submanifolds via a characterisation under feedback transformations of the novel class of quadratic control-affine systems. This characterisation can explicitly be tested on structure functions defined for any control-affine system and gives a normal form of quadratisable systems and of conic submanifolds. Then, we consider the classification problem of regular conic submanifolds (ellipses, hyperbolas, and parabolas), which is treated via feedback classification of quadratic control-nonlinear systems. Our classification includes several normal forms of quadratic systems (in particular, normal forms not containing functional parameters as well as those containing neither functional nor real parameters) and, as a consequence, gives a classification of regular conic submanifolds.
期刊介绍:
Journal of Dynamical and Control Systems presents peer-reviewed survey and original research articles which examine the entire spectrum of issues related to dynamical systems, focusing on the theory of smooth dynamical systems with analyses of measure-theoretical, topological, and bifurcational aspects. The journal covers all essential branches of the theory - local, semilocal, and global - including the theory of foliations. Control systems coverage spotlights the geometric control theory, which unifies Lie-algebraic and differential-geometric methods of investigation in control and optimization, and ultimately relates to the general theory of dynamical systems, in particular, sub-Riemannian geometry is covered. Additional authoritative contributions describe ongoing investigations and innovative solutions to unsolved problems. Detailed reviews of newly published books relevant to future studies in the field are also included. Journal of Dynamical and Control Systems will serve as a highly useful reference for mathematicians, students, and researchers interested in the many facets of dynamical and control systems.