Yang-Mills-Stueckelberg理论,对称的框架和局部破缺

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Alexander D. Popov
{"title":"Yang-Mills-Stueckelberg理论,对称的框架和局部破缺","authors":"Alexander D. Popov","doi":"10.1142/s0129055x23500356","DOIUrl":null,"url":null,"abstract":"We consider Yang-Mills theory with a compact structure group $G$ on a Lorentzian 4-manifold $M={\\mathbb R}\\times\\Sigma$ such that gauge transformations become identity on a submanifold $S$ of $\\Sigma$ (framing over $S\\subset\\Sigma$). The space $S$ is not necessarily a boundary of $\\Sigma$ and can have dimension $k\\le 3$. Framing of gauge bundles over $S\\subset\\Sigma$ demands introduction of a $G$-valued function $\\phi_S$ with support on $S$ and modification of Yang-Mills equations along ${\\mathbb R}\\times S\\subset M$. The fields $\\phi_S$ parametrize nonequivalent flat connections mapped into each other by a dynamical group ${\\mathcal G}_S$ changing gauge frames over $S$. It is shown that the charged condensate $\\phi_S$ is the Stueckelberg field generating an effective mass of gluons in the domain $S$ of space $\\Sigma$ and keeping them massless outside $S$. We argue that the local Stueckelberg field $\\phi_S$ can be responsible for color confinement. We also briefly discuss local breaking of symmetries in gravity. It is shown that framing of the tangent bundle over a subspace of space-time makes gravitons massive in this subspace.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":"51 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Yang-Mills-Stueckelberg Theories, Framing and Local Breaking of Symmetries\",\"authors\":\"Alexander D. Popov\",\"doi\":\"10.1142/s0129055x23500356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Yang-Mills theory with a compact structure group $G$ on a Lorentzian 4-manifold $M={\\\\mathbb R}\\\\times\\\\Sigma$ such that gauge transformations become identity on a submanifold $S$ of $\\\\Sigma$ (framing over $S\\\\subset\\\\Sigma$). The space $S$ is not necessarily a boundary of $\\\\Sigma$ and can have dimension $k\\\\le 3$. Framing of gauge bundles over $S\\\\subset\\\\Sigma$ demands introduction of a $G$-valued function $\\\\phi_S$ with support on $S$ and modification of Yang-Mills equations along ${\\\\mathbb R}\\\\times S\\\\subset M$. The fields $\\\\phi_S$ parametrize nonequivalent flat connections mapped into each other by a dynamical group ${\\\\mathcal G}_S$ changing gauge frames over $S$. It is shown that the charged condensate $\\\\phi_S$ is the Stueckelberg field generating an effective mass of gluons in the domain $S$ of space $\\\\Sigma$ and keeping them massless outside $S$. We argue that the local Stueckelberg field $\\\\phi_S$ can be responsible for color confinement. We also briefly discuss local breaking of symmetries in gravity. It is shown that framing of the tangent bundle over a subspace of space-time makes gravitons massive in this subspace.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129055x23500356\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129055x23500356","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑具有紧结构群的Yang-Mills理论 $G$ 在洛伦兹4流形上 $M={\mathbb R}\times\Sigma$ 使得规范变换成为子流形上的恒等变换 $S$ 的 $\Sigma$ (换帧) $S\subset\Sigma$). 空间 $S$ 不一定是一个边界吗 $\Sigma$ 可以有维度 $k\le 3$. 框架的规范束 $S\subset\Sigma$ 要求引入 $G$无值函数 $\phi_S$ 有了支持 $S$ Yang-Mills方程的修正 ${\mathbb R}\times S\subset M$. 田野 $\phi_S$ 由动力群相互映射的非等价平面连接的参数化 ${\mathcal G}_S$ 更换量规架 $S$. 结果表明,带电冷凝物 $\phi_S$ Stueckelberg场是否在区域内产生了有效质量的胶子 $S$ 空间的 $\Sigma$ 保持它们在外面没有质量 $S$. 我们认为当地的Stueckelberg场 $\phi_S$ 可负责颜色限制。我们还简要讨论了引力中对称性的局部破缺。证明了切束在时空子空间上的分幅使得引力子在该子空间中具有质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yang-Mills-Stueckelberg Theories, Framing and Local Breaking of Symmetries
We consider Yang-Mills theory with a compact structure group $G$ on a Lorentzian 4-manifold $M={\mathbb R}\times\Sigma$ such that gauge transformations become identity on a submanifold $S$ of $\Sigma$ (framing over $S\subset\Sigma$). The space $S$ is not necessarily a boundary of $\Sigma$ and can have dimension $k\le 3$. Framing of gauge bundles over $S\subset\Sigma$ demands introduction of a $G$-valued function $\phi_S$ with support on $S$ and modification of Yang-Mills equations along ${\mathbb R}\times S\subset M$. The fields $\phi_S$ parametrize nonequivalent flat connections mapped into each other by a dynamical group ${\mathcal G}_S$ changing gauge frames over $S$. It is shown that the charged condensate $\phi_S$ is the Stueckelberg field generating an effective mass of gluons in the domain $S$ of space $\Sigma$ and keeping them massless outside $S$. We argue that the local Stueckelberg field $\phi_S$ can be responsible for color confinement. We also briefly discuss local breaking of symmetries in gravity. It is shown that framing of the tangent bundle over a subspace of space-time makes gravitons massive in this subspace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信