曲面基本群的无限表示

IF 0.5 4区 数学 Q3 MATHEMATICS
Ryoma Kobayashi
{"title":"曲面基本群的无限表示","authors":"Ryoma Kobayashi","doi":"10.32917/h2022001","DOIUrl":null,"url":null,"abstract":"For any finite type connected surface S, we give an infinite presentation of the fundamental group π1(S,*) of S based at an interior point *∈S whose generators are represented by simple loops. When S is non-orientable, we also give an infinite presentation of the subgroup of π1(S,*) generated by elements which are represented by simple loops whose regular neighborhoods are annuli.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite presentations for fundamental groups of surfaces\",\"authors\":\"Ryoma Kobayashi\",\"doi\":\"10.32917/h2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any finite type connected surface S, we give an infinite presentation of the fundamental group π1(S,*) of S based at an interior point *∈S whose generators are represented by simple loops. When S is non-orientable, we also give an infinite presentation of the subgroup of π1(S,*) generated by elements which are represented by simple loops whose regular neighborhoods are annuli.\",\"PeriodicalId\":55054,\"journal\":{\"name\":\"Hiroshima Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hiroshima Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/h2022001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/h2022001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意有限型连通曲面S,我们给出了S的基群π1(S,*)的无限表示,π1(S,*)基于一个内部点*∈S,其生成点用简单环表示。当S不可定向时,我们也给出了π1(S,*)子群的无限表示,π1(S,*)子群是由正则邻域为环空的简单环所表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite presentations for fundamental groups of surfaces
For any finite type connected surface S, we give an infinite presentation of the fundamental group π1(S,*) of S based at an interior point *∈S whose generators are represented by simple loops. When S is non-orientable, we also give an infinite presentation of the subgroup of π1(S,*) generated by elements which are represented by simple loops whose regular neighborhoods are annuli.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信